DOI QR코드

DOI QR Code

Simple and Cost-Effective Method for Edge Bead Removal by Using a Taping Method

  • Park, Hyeoung Woo (Department of Physics, Kyungpook National University) ;
  • Kim, H.J. (Department of Physics, Kyungpook National University) ;
  • Roh, Ji Hyoung (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Choi, Jong-Kyun (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Cha, Kyoung-Rae (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
  • Received : 2018.04.24
  • Accepted : 2018.06.04
  • Published : 2018.11.30

Abstract

In this study, we have developed a simple and cost-effective method to prevent edge bead formation by covering the edge of a chip-level substrate with heat-resistant tape during patterning using SU-8. Edge beads are a fundamental problem in photoresists and are particularly notable in high-viscosity fluids and thick coatings. Edge beads can give rise to an air gap between the substrate and the patterning mask during UV exposure, which results in non-uniform patterns. Furthermore, the sample may break since the edge bead is in contact with the mask. In particular, the SU-8 coating thickness of the chip-level substrates used in MEMS or BioMEMS may not be properly controlled because of the presence of edge beads. The proposed method to solve the edge bead problem can be easily and economically utilized without the need for a special device or chemicals. This method is simple and prevents edge bead formation on the sample substrate. Despite the small loss in the taping area, the uniformity of the SU-8 coating is improved from 50.9% to 5.6%.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M. Shaw, D. Nawrocki, R. Hurditch and D. Johnson, Microsys. Technol. 10, 1 (2003). https://doi.org/10.1007/s00542-002-0216-4
  2. B. Eyre, J. Blosiu and D. Wiberg, in Proceedings, The Eleventh Annual International Workshop on IEEE (1998), p. 218.
  3. A. Bogdanov and S. Peredkov, Microelectron. Eng. 53, 493 (2000). https://doi.org/10.1016/S0167-9317(00)00363-4
  4. H. Lee, K. Lee, B. Ahn, J. Xu, L. Xu and K. W. Oh, J. Micromech. Microeng. 21, 125006 (2011). https://doi.org/10.1088/0960-1317/21/12/125006
  5. N. J. Shirtcliffe, S. Aqil, C. Evans, G. McHale, M. I. Newton, C. C. Perry and P. Roach, J. Micromech. Microeng. 14, 1384 (2004). https://doi.org/10.1088/0960-1317/14/10/013
  6. S. M. Langelier, E. Livak-Dahl, A. J. Manzo, B. N. Johnson, N. G. Walter and M. A. Burns, Lab on a Chip 11, 1679 (2011). https://doi.org/10.1039/c0lc00517g
  7. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud and P. Vettiger, J. Micromech. Microeng. 7, 121 (1997). https://doi.org/10.1088/0960-1317/7/3/010
  8. H. Pandya, H. T. Kim, R. Roy and J. P. Desai, Mater. Sci. Semicond. Process. 19, 163 (2014). https://doi.org/10.1016/j.mssp.2013.12.016
  9. A. Mata, A. J. Fleischman and S. Roy, J. Micromech. Microeng. 16, 276 (2006). https://doi.org/10.1088/0960-1317/16/2/012
  10. P. Abgrall, V. Conedera, H. Camon, A. M. Gue and N. T. Nguyen, Electrophor. 28, 4539 (2007). https://doi.org/10.1002/elps.200700333
  11. H. Sato, H. Matsumura, S. Keino and S. Shoji, J. Micromech. Microeng. 16, 2318 (2006). https://doi.org/10.1088/0960-1317/16/11/010
  12. R. S. Shawgo, A. C. R. Grayson, Y. Li and M. J. Cima, Curr. Opin. Solid-State Mater. Sci. 6, 329 (2002). https://doi.org/10.1016/S1359-0286(02)00032-3
  13. D. V. McAllister, P. M. Wang, S. P. Davis, J-H. Park, P. J. Canatella, M. G. Allen and M. R. Prausnitz, Proc. Natl. Acad. Sci. 100, 13755 (2003). https://doi.org/10.1073/pnas.2331316100
  14. K-J. Kim, Y-S. Kim, J-J. Bae, B-H. Kang, S-H. Yeom, H. Yuan and S-W. Kang, Sol. Ener. Mat. Sol. Cells 95, 1238 (2011). https://doi.org/10.1016/j.solmat.2010.12.050
  15. H. Chiamori, J. Brown, E. Adhiprakasha, E. Hantsoo, J. Straalsund, N. Melosh and B. Pruitt, Microelectron. 39, 228 (2008). https://doi.org/10.1016/j.mejo.2007.05.012
  16. C-P. Lin, C-H. Chang, Y. Cheng and C. F. Jou, IEEE Antenna, Wire, Propagation Lett. 10, 1108 (2011). https://doi.org/10.1109/LAWP.2011.2170398
  17. X. Niu, S. Peng, L. Liu, W. Wen and P. Sheng, Adv. Mater. 19, 2682 (2007). https://doi.org/10.1002/adma.200602515
  18. E. Plis, S. Krishna, N. Gautam, S. Myers and S. Krishna, IEEE Photon. J. 3, 234 (2011). https://doi.org/10.1109/JPHOT.2011.2125949
  19. H. S. Kim, S. Myers, B. Klein, A. Kazemi, S. Krishna, J. O. Kim and S. J. Lee, J. Korean Phys. Soc. 66, 535 (2015). https://doi.org/10.3938/jkps.66.535
  20. N. Atthi, O. Nimittrakoolchai, W. Jeamsaksiri, S. Supothina, C. Hruanun and A. Poyai, Songklanakarin J. Sci. Technol. 31, 331 (2009).
  21. H. Miyajima and M. Mehregany, J. Microelectromech. Syst. 4, 220 (1995). https://doi.org/10.1109/84.475549
  22. L. Li, X. Liu and A. J. Mason, in 2012 IEEE International Symposium (2012), p. 2401.
  23. J. Zhang, M. B. Chan-Park, J. Miao and T. T. Sun, Microsys. Techn. 11, 519 (2005). https://doi.org/10.1007/s00542-005-0586-5
  24. Y-J. Chuang, F-G. Tseng and W-K. Lin, Microsys. Techn. 8, 308 (2002). https://doi.org/10.1007/s00542-002-0176-8
  25. S-W. Youn, A. Ueno, M. Takahashi and R. Maeda, Microelectron. Eng. 85, 1924 (2008). https://doi.org/10.1016/j.mee.2008.06.016
  26. W-J. Kang, E. Rabe, S. Kopetz and A. Neyer, J. Micromech. Microeng. 16, 821 (2006). https://doi.org/10.1088/0960-1317/16/4/020
  27. L. Convert, F. G. Baril, V. Boisselle, J-F. Pratte, R. Fontaine, R. Lecomte, P. G. Charette and V. Aimez, Lab on a Chip 12, 4683 (2012). https://doi.org/10.1039/c2lc40550d
  28. A. Ping, A. Schmitz, I. Adesida, M. A. Khan, Q. Chen and J. Yang, J. Electron. Mater. 26, 266 (1997). https://doi.org/10.1007/s11664-997-0162-0

Cited by

  1. Unevenness of Thin Liquid Layer by Contact Angle Variation of Substrate during Coating Process vol.9, pp.3, 2019, https://doi.org/10.3390/coatings9030162
  2. Residual changes and thickness effects in glass-forming polymer thin films after solvent vapor annealing vol.238, pp.None, 2018, https://doi.org/10.1016/j.polymer.2021.124417