• Title/Summary/Keyword: Thick film process

Search Result 375, Processing Time 0.021 seconds

Fabrication of Oxide Thick Film for Renewable Electrical Energy Storage Technology

  • Lee, Sang-Heon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.186-189
    • /
    • 2005
  • We have fabricated superconducting HTSC ceramic thick films by chemical process. c-axis oriented HTSC thick films have been attempted bi-axially textured Ni tapes. The x-ray diffraction pattern of the HTSC thick films contained superconducting phase crystal. The critical temperature and critical current density was 110K.

Electrical Characterization of Nano SOI Wafer by Pseudo MOSFET (Pseudo MOSFET을 이용한 Nano SOI 웨이퍼의 전기적 특성분석)

  • Bae, Young-Ho;Kim, Byoung-Gil;Kwon, Kyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1075-1079
    • /
    • 2005
  • The Pseudo MOSFET measurements technique has been used for the electrical characterization of the nano SOI wafer. Silicon islands for the Pseudo MOSFET measurements were fabricated by selective etching of surface silicon film with dry or wet etching to examine the effects of the etching process on the device properties. The characteristics of the Pseudo MOSFET were not changed greatly in the case of thick SOI film which was 205 nm. However the characteristics of the device were dependent on etching process in the case of less than 100 nm thick SOI film. The sub 100 nm SOI was obtained by thinning the silicon film of standard thick SOI wafer. The thickness of SOI film was varied from 88 nm to 44 nm by chemical etching. The etching process effects on the properties of pseudo MOSFET characteristics, such as mobility, turn-on voltage, and drain current transient. The etching Process dependency is greater in the thinner SOI wafer.

Electrical Characterization of nano SOl wafer by Pseudo MOSFET (Pseudo-MOSFET을 이용한 nano SOI 웨이퍼의 전기적 특성분석)

  • Bae, Young-Ho;Kim, Byoung-Gil;Kwon, Kyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.3-4
    • /
    • 2005
  • The Pseudo-MOSFET measurements technique has been used for the electrical characterization of the nano SOL Silicon islands for the Pseudo-MOS measurements were fabricated by selective etching of surface silicon film with dry or wet etching to examine the effects of the etching process on the device properties. The characteristics of the Pseudo-MOS was not changed greatly in the case of thick SOI film which was 205 nm. However the characteristics of the device was dependent on etching process in the case of less than 100 nm thick SOI film. The sub 100nm SOI was obtained by thinning the silicon film of standard thick SOI. The thickness of SOI film was varied from 88 nm to 44 nm by chemical etching. The etching process effects on the properties of pseudo-MOSFET characteristics, such as mobility, turn-on voltage, and drain current transient. The etching process dependency is greater in the thinner SOI and related to original SOI wafer quality.

  • PDF

Planarization technology of thick copper film structure for power supply (전력 소자용 후막 구리 구조물의 평탄화)

  • Joo, Suk-Bae;Jeong, Suk-Hoon;Lee, Hyun-Seop;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.523-524
    • /
    • 2007
  • This paper discusses the planarization process of thick copper film structure used for power supply device. Chemical mechanical polishing(CMP) has been used to remove a metal film and obtain a surface planarization which is essential for the semiconductor devices. For the thick metal removal, however, the long process time and other problems such as dishing, delamination and metal layer peeling are being issued, Compared to the traditional CMP process, Electro-chemical mechanical planarization(ECMP) is suggested to solve these problems. The two-step process composed of the ECMP and the conventional CMP is used for this experiment. The first step is the removal of several tens ${\mu}m$ of bulk copper on patterned wafer with ECMP process. The second step is the removal of residual copper layer aimed at a surface planarization. For more objective comparison, the traditional CMP was also performed. As an experimental result, total process time and process defects are extremely reduced by the two-step process.

  • PDF

A Study on Characterization of Thick Film used as Superconducting Fault Current Limiter (고온 초전도 전류제한기용 후막의 특성 연구)

  • 조동언;박경국;김동원;정길도;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1139-1145
    • /
    • 1998
  • In this paper, to fabricate a superconducting fault current limiter(FCL) of thick film type, $YBa_2Cu_3O_X superconducting thick films were fabricated by surface diffusion process using the screen printing method. Powder mixture of $3BaCuO_2$+2CuO was screen printed on $Y_2BaCuO_5$(d=15mm). And critical current densities of the thick films were observed as the sintering temperature(92$0^{\circ}C$~95$0^{\circ}C$) and holding time(2h~10h). Based on experimental data, the thick films for superconducting FCL were sintered at $940^{\circ}C$ in 2 hours. The superconducting FCL with a current limiting area of 1mm wide and 66mm long was prepared on $Y_2BaCuO_5$ substrate. To measure the characterization of the fabricated FCL, an alternating voltage (60Hz) was applied to the FCL in 77K liquid nitrogen. At an applied voltage of 4V, the FCL was limited from 20A into 0.6A not farther than 0.5ms.

  • PDF

Microwave assisted processing of silver thick films for microelectronic applications

  • Rane, Sunit;Bhatkar, Rushna;Mulik, Uttam;Amalnerkar, Dinesh
    • Advances in materials Research
    • /
    • v.2 no.3
    • /
    • pp.133-140
    • /
    • 2013
  • This paper aims to focus on the microwave processing of thick films which is a fast, cheap technique and could be the alternative to the currently used conventional high temperature processing technique. Microwave processing has gained worldwide acceptance as a novel method for heating and sintering a variety of materials, as it offers specific advantages in terms of speed, energy efficiency, process simplicity, finer microstructures and lower environmental hazards. Silver conducting thick films were prepared and processed in the household microwave oven. The films sintered at different time period by keeping the other parameter such as microwave power, film thickness etc constant. The microstructure analysis revealed that the surface morphology of the microwave processed films become compact with respect to the processing time. The sheet resistance for microwave sintered silver films is in the range of 0.003 to $1.207{\Omega}/{\Box}$ where as the films fired at 750 and $850^{\circ}C$ showed the resistance of 0.009 and $0.003{\Omega}/{\Box}$ which can be comparable. The results revealed that the microstructure of the microwave sintered films has more uniform and compact surface than that of the conventionally fired films. The paper reports upon the preparation of silver thick film by screen printing technique and processing the same by microwave which also compared with the conventionally processed thick films.

The study on characterization and fabrication of current limiting device using HTSC-thick film (고온초전도후막을 이용한 전류제한소자제작 및 특성연구)

  • Lim, Sung-Hun;Kang, Hyeong-Gon;Chung, Dong-Chul;Du, Ho-Ik;Han, Byoung-Sung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.242-246
    • /
    • 1999
  • For the fabrication of fault current limiting device using HTSC thick film, YBa$_2Cu_3O_x$ superconducting thick film was formed by surface diffusion process of the Y$_2BaCUO_5$ and the mixed compound of (3BaCuO$_2$+2CuO) expected to be liquid phase above the peritectic temperature of YBa$_2Cu_3O_x$. For the surface diffusion, the compounds of 3BaCuO$_2$+2CuO mixed with binder material was patterned on Y$_2BaCUO_5$ substrate by the screen printing method. After proper sintering, the characteristics of current limit on thick film fabricated was measured. The thick film was able to limit the current from 2.8213 mA$_{rms}$nu to 4.2034 mA$_{rms}$ with 500${\omega}$ load resistance, and from 4.1831 mA$_{rms}$ to 4.2150 mA$_{rms}$ with 10${\omega}$ load resistance.

  • PDF

The Characteristic of PZT/BT Heterolayered films (PZT/BT 이종박막의 특성)

  • Lee, Sang-Heon;Nam, Sung-Pill;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.260-261
    • /
    • 2005
  • The heterolayered thick/thin structure consisting of $Pb(Zr_{0.52}Ti_{0.48})O_3$ and $BaTiO_3(BT)$ were fabricated by a sol-gel process. PZT powders, prepared by the sol-gel method, were mixed with an organic vehicle and the PZT thick films were fabricated by the screen printing techniques on alumina substrate with Pt electrodes. The microstructural and dielectric characteristics of the stacked heterolayered PZT/BT/PZT films were investigated by varying the number of coating $BaTiO_3$ layers. The existence of a $BaTiO_3$ layer between the PZT thick films of the tri-layer $Pb(Zr_xTi_{1-x})O_3/BaTiO_3/Pb(Zr_xTi_{1-x})O_3$thick/thin/thick film can greatly improve the leakage current properties of the PZT thick films. The average thickness of a PZT(5248)/$BaTiO_3$ heterolayered thick/thin film was 25$\mu$m. The relative dielectric constant and dielectric loss of the PZT(5248)/$BaTiO_3$-3 heterolayered thin film coated three times were 1087 and 1.00% at 1[MHz].

  • PDF

Characterization for Ceramic-coated Magnets Using E-beam and Thermal Annealing Methods (마그넷 적용 세라믹 코팅 후막의 전자빔 조사 및 열 경화 방법에 따른 특성)

  • Kim, Hyug-Jong;Kim, Hee Gyu;Kang, In Gu;Kim, Min Wan;Yang, Ki Ho;Lee, Byung Cheol;Choi, Byung-Ho
    • Journal of Radiation Industry
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • Hard magnet was usually used by coating $SiO_2$ ceramic thick films followed by the thermal annealing process. In this work, the alternative annealing process for NdFeB magnets using e-beam sources (1~2 MeV, 50~400 kGy) was investigated. NdFeB magnets was coated with ceramic thick films using the spray method. The optimal annealing parameter for e-beam source reveals to be 1 MeV and 300 kGy. The sample prepared at 1 MeV and 300 kGy was characterized by the analysis of the surface morphology, film hardness, adhesion and chemical stability. The mechanical property of thick film, especially film hardness, is better than that of thermal annealed samples at $180^{\circ}C$. As a result, e-beam annealing process will be one of candidate and attractive heat treatment process. In future, manufacturing process will be carried out in cooperation with the magnet company.

High $T_c$ Superconducting Thick Film for Applications

  • Soh, Deawha;Park, Seongbeom;Wang, Jue;Li, Fenghua;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.12-15
    • /
    • 2003
  • The YBaCuO thick film was deposited by the electrophoresis in the solution with different dimension particles. The morphology of the films deposited from different particles size was compared. The powder made by sol-gel method has the submicron particles, which deposit the most smooth film, and without microcracks after sintering. After sintering of the deposited film, the zone-melting process was carried out in low oxygen partial pressure (100 Pa) and Ag was used as substrate. And the zone-melted YBaCuO was studied by XRD.

  • PDF