• Title/Summary/Keyword: Thick film process

Search Result 375, Processing Time 0.031 seconds

Fabrication and Characterization of Suspended-type Thin Film Resonator Using SOI-Micromachining Process (SOI 마이크로머시닝 공정을 이용한 Suspended-type 박막공진기의 제작 및 특성평가)

  • Ju, Byeong-Kwon;Kim, Hyun-Ho;Lee, Si-Hyung;Lee, Jeon-Kook;Kim, Soo-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.303-306
    • /
    • 2001
  • STFR were fabricated on the floating membrane which was formed by SOI-micromachining process. The floating membranes having a thickness range of $3{\sim}15{\mu}m$ could be simply formed by micromachining the directly-bonded and thinned SOI substrate. The STFR device fabricated on the $15{\mu}m$-thick membrane showed resonance frequency of fr = 1.65 GHz, coupling coefficient of Keff2 = 2.4 %, and series and parallel quality factors of Qs = 91.7 and Qp = 87.7, respectively.

  • PDF

Optimization of Pretreatment Conditions for Ti Surface in the Low Voltage PEO Anodization Process (저전압 PEO 양극산화 공정을 위한 Ti 전처리 조건의 최적화 연구)

  • Ha, Dongheun;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.439-446
    • /
    • 2017
  • Plasma electrolyte oxidation (PEO) is a kind of anodization, in which a very high voltage or current is applied to a metal substrate in various electrolytes, allowing distinctly thick thickness of the oxide film with outstanding film properties, such as a good corrosion resistance, mechanical strength, thermal stability, and excellent adhesion to a substrate. Herein, we tried to find the optimal pretreatment conditions among commercially available solutions in order to produce PEO anodizing at relatively low voltage. We characterized the surface morphologies of the sample by scanning electron microscope (SEM), atomic force microscopy (AFM), and investigated color parameters of the pretreated surface of Ti by spectrophotometer.

Comparison of Depth Profiles of CIGS Thin Film by Micro-Raman and XPS (마이크로 라만 및 XPS를 이용한 CIGS 박막의 두께방향 상분석 비교)

  • Beak, Gun Yeol;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • Chalcopyrite based (CIGS) thin films have considered to be a promising candidates for industrial applications. The growth of quality CIGS thin films without secondary phases is very important for further efficiency improvements. But, the identification of complex secondary phases present in the entire film is crucial issue due to the lack of powerful characterization tools. Even though X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and normal Raman spectroscopy provide the information about the secondary phases, they provide insufficient information because of their resolution problem and complexity in analyzation. Among the above tools, a normal Raman spectroscopy is better for analysis of secondary phases. However, Raman signal provide the information in 300 nm depth of film even the thickness of film is > $1{\mu}m$. For this reason, the information from Raman spectroscopy can't represent the properties of whole film. In this regard, the authors introduce a new way for identification of secondary phases in CIGS film using depth Raman analysis. The CIGS thin films were prepared using DC-sputtering followed by selenization process in 10 min time under $1{\times}10^{-3}torr$ pressure. As-prepared films were polished using a dimple grinder which expanded the $2{\mu}m$ thick films into about 1mm that is more than enough to resolve the depth distribution. Raman analysis indicated that the CIGS film showed different secondary phases such as, $CuIn_3Se_5$, $CuInSe_2$, InSe and CuSe, presented in different depths of the film whereas XPS gave complex information about the phases. Therefore, the present work emphasized that the Raman depth profile tool is more efficient for identification of secondary phases in CIGS thin film.

Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection (Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

Preparation of Ferroelectric $Cr_3C_2$ Thin Film Using Sol-Gel Spin Coating Process (솔-젤 회전 코팅법을 이용한 강유전성 $BaTiO_3$ 박막제조)

  • 배호기;고태경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.795-803
    • /
    • 1994
  • Ferroelectric BaTiO3 thin film was produced using BaTi-ethoxide sol. This sol was prepared from BaTi-ethoxide by a partial hydrolysis with ammonia as a basic catalyst and ethylene glycol as a chelating agent. BaTiO3 thin film was prepared from three continuous spin-coating layers of the sol on bare Si(100) wafer at 2500 rpm followed by pyrolysis at $700^{\circ}C$ for 30 min. After the heat treatment, the film was 0.200$\pm$0.010 ${\mu}{\textrm}{m}$ thick and its grain size was 0.059 ${\mu}{\textrm}{m}$. On the other hand, electrical properties were measured for BaTiO3 thin film separately prepared on Au-deposited silicon wafer. The dielectric constant and loss of the BaTiO3 thin film at room temperature was 150~160 and 0.04 respectively, which was measured at 10 kHz and oscillation level of 0.1 V. In the measurements of the dielectric properties at high temperatures, it was observed that the capacitance of the thin film increases steeply, while the dielectric loss reaches maximum around 1$25^{\circ}C$, which corresponds a phase transition from tetragonal to cubic BaTiO3.

  • PDF

A Study on the Improvement of Oxidation and Corrosion Resistance of Stainless Steel by Sol-Gel Ceramic Coating; (I) Synthesis of Zirconia Sol and Fabrication of Its Thin Film (졸-겔 세라믹 코팅에 의한 스테인레스강의 내산화 및 내식성 향상에 관한 연구;(I) 지르코니아 졸의 합성 및 박막의 제조)

  • Kim, Byong-Ho;Hong, Kwon;Shin, Dong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1060-1068
    • /
    • 1994
  • Stable zirconia sol was prepared from zirconium butoxide Zr(OC4O9)4 as a precursor and ethylacetoacetate(EAcAc) or diethylene glycol(DEG) as a chelating agent under ambient agent under ambient atmosphere by Sol-Gel process. The sythesized sol was coated on 304 stainless steel substrate by dip coating, thereafter zirconia film could be obtained by heat-treatment at $600^{\circ}C$. The characteristics of coating film were determined by FT-IR, XRD, and ellipsometion peak represented Zr-O-Zr bonding of tetragonal phase was shown at 470cm-1. Crystallization of zirconia gel and film from amorphous state to tetragonal phase started at 40$0^{\circ}C$, and then transformed into monoclinic phase around $700^{\circ}C$. Zirconia film coated on 304 stainless steel substrate showed relatively low porosity of 16% when it was coated with 0.4M zirconia sol and thereafter heat-treated at 80$0^{\circ}C$ and the film was densified continuously up to 90$0^{\circ}C$. The zirconia film of 10 nm thick acted as a protective layer against oxidation up to $700^{\circ}C$.

  • PDF

Mechanical characterization of 100 nm-thick Au thin film using strip bending test (띠 굽힘 시험을 통한 100 nm 두께 금 박막의 기계적 특성 평가)

  • Kim, J.H.;Lee, H.J.;Han, S.W.;Baek, C.W.;Kim, J.M.;Kim, Y.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.252-257
    • /
    • 2004
  • Nanometer-sized structures are being applied to many devices including micro/nano electronics, optoelectronics, quantum devices, MEMS/NEMS, biosensors, etc. Especially, the thin film with submicron thickness is a basic structure for fabricating these devices, but its mechanical behaviors are not well understood. The mechanical properties of the thin film are different from those of the bulk structure and are difficult to measure because of its handling inconvenience. Several techniques have been applied to mechanical characterization of the thin film, such as nanoindentation test, micro/nano tensile test, strip bending test, etc. In this study, we focus on the strip bending test because of its high accuracy and moderate specimen preparation efforts, and measure Au thin film, which is a very popular material in micro/nano electronic devices. Au film is deposited on Si substrate by evaporation process, of which thickness is 100nm. Using the strip bending test, we obtain elastic modulus, yield and ultimate tensile strength, and residual stress of Au thin film.

  • PDF

Low temperature activation of dopants by metal induced crystallization (금속 유도 결정화에 의한 저온 불순물 활성화)

  • 인태형;신진욱;이병일;주승기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.45-51
    • /
    • 1997
  • Low temperature activation of dopants which were doped using ion mass doping system in amorphous silicon(a-Si) thin films was investigated. With a 20.angs.-thick Ni film on top of the a-Si thin film, the activation temperature of dopants lowered to 500.deg. C. When the doping was performaed after the deposition of Ni thin film on the a-Si thin films (post-doping), the activation time was shorter than that of dopants mass, the activation time of the dopants doped by pre-doping method increased. It turned NiSi2 formation, while the decrease of activation time was mainly due to the enhancement of the NiSi2 formation by mixing of Ni and a-Si at the interface of Ni and a -Si thin during the ion doping process.

  • PDF

Transparent MWCNT Thin Films Fabricated by using the Spray Method (스프레이법으로 제작된 투명 MWCNT 박막)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.338-342
    • /
    • 2010
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. The MWCNT films were investigated as a transparent electrode for the solar cell, OLED, and field-emission display. MWCNT films were fabricated by air spray method, whose process is quite low-costed, using the multi-walled CNTs solution on glass substrates. Moreover, the most stable film was fabricated when the spraying time was 60 sec. The film that was sprayed with the MWCNT dispersion for 60 sec, has 300nm thick. And its electric resistivity, transmittance rate, mobility and carrier concentration are $6{\times}10^{-2}{\Omega}{\cdot}cm$, 50% at ${\lambda}=550mm$, $4.3{\times}10^{-2}cm^2/V{\cdot}s$ and $2.1{\times}10^{21}cm^{-3}$, respectively. Also, absorption energy of MWCNT films show from 3.9 eV to 4.6 eV. Furthermore, we can use MWCNT films fabricated by the spray method for the transparent electrode.

Characteristics of Hydrogenation and Electronic Properties of Thin Film Y-Hx

  • Cho, Young-Sin;Jee, Chan-Soo;Kim, Sun-Hee;Yoon, Jong-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.3 no.2
    • /
    • pp.35-43
    • /
    • 1992
  • Thin Film yttrium, 500 nm thick, was prepared by electron beam evaportion on sapphire substrate. Film was hydrogenated at room temperature upto 1 bar hydorgen pressure without any activation process. Electrical resistivity was measured by four-point DC method in the temperature range between room temperature and 30 K for various hydorgen concentration x = 0 to 2.924 of $YH_x$ sample. Temperature dependent resistance of $YH_{2\;924}$ shows low temperature minmum at 105K ($36{\mu}{\Omega}cm$ deep), the metal-semiconductor transition at 260K, and a hysteresis, which are similar behavior to bulk $YH_x$(x>2) experimental results.

  • PDF