• 제목/요약/키워드: Thermoplastic polymer

Search Result 202, Processing Time 0.029 seconds

Compressional Properties of PTT BCF and Nylon BCF Carpets (PTT BCF카펫과 나일론 BCF카펫의 압축특성(壓縮特性)에 관(關)한 연구(硏究))

  • Yun, Myung-Hui;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.8 no.5
    • /
    • pp.115-124
    • /
    • 2004
  • PTT(polytrimethylene terephthalate) is a thermoplastic that can be melt-spun into fibers and has extensive applications in carpets, textiles and apparel, engineering thermoplastics, nonwovens, and films or sheets. This polymer combines the good properties of nylon and polyester. Compared with other synthetic fibers such as nylon and acrylic, the PTT fibers feel softer, dye easier with vibrant colors, stretch and recover better. Moreover, the PTT fibers for carpets resist most stainings, clean better, and dry faster. The PTT was first patented in 1941, but it was not until the 1990's, when Shell Chemicals developed the practical method of producing PDO, the raw material for PTT. Many studies have been done including the retention of carpet texture using an image analysis technique, or compressional resilience of the carpet for long term use. In this study, PTT and nylon BCF carpets were compared in terms of the compressional properties including the resilience, using one of the KES system for repetitive measurements. The compression resilience(RC) values of the PTT BCF carpets far exceed those of nylon 6 BCF carpets. The RC values of the PTT BCF carpet(cut) specimens are $42{\sim}45%$ for 5 successive compression deformations, while those of the nylon BCF carpet specimens(cut) are $26{\sim}28%$. There is also a similar trend in the RC values for the other type of carpet which is the loop type. This resilience is one of the important factors of carpet usage evaluation.

High Proton Conductivity Crosslinked Sulfonated Polyimide Membranes (높은 수소이온전도성을 가진 가교술폰화폴리이미드막)

  • Lee, Chang-Hyun;Park, Chi-Hoon;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.61-63
    • /
    • 2003
  • A major research objective related to proton exchange membrane(PEM) for DMFC is to achieve high proton conductivity over 10$^{-2}$ S/cm, high hydrolytic stability and low methanol permeability with low cost base materials. for the purpose, a lot of thermoplastic polymers such as polysulfones, polyethersulfone, polyetherketones, polyimides, polyoxadiazole, polyphosphazene and polybenzimidazol have been investigated. Amongst those polymers, polyimides have been suggested as a potential PEM due to their excellent thermal, chemical stability and good mechanical properties. Generally, polyimides are synthesized by polycondensation with numerious diamines and dianhydriedes. In our study, polyimide was prepared using non-sulfonated diamine, sulfonated diamine directly synthesized by fuming sulfuric acid, and naphthalenic dianhydride to improve the hydrolysis stability under acidic condition. Through monomer sulfonation-subsequent polymerization method, the high proton conducting capability and the desired sulfonation level were effectively controlled at the same time. To reduce severe methanol transport through the membrane, the chemical crosslinking among polymer chains was introduced using various crosslinking agents with different chain lengths. The crosslinked sulfonated polyimide membranes showed high proton conductivity up to 8.09$\times$10$^{-2}$ S/cm and from crosslinking effect methanol transport through the membranes was considerably reduced as compared with unmodified membranes. For increase of chain length of crosslinker, methanol permeability was adversely reduced to 10$^{-8}$ $\textrm{cm}^2$/s due to decrease of IEC and increase of crosslinking desity.

  • PDF

Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer

  • Koodaryan, Roodabeh;Hafezeqoran, Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.504-510
    • /
    • 2016
  • PURPOSE. Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. MATERIALS AND METHODS. 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (${\alpha}=.05$). RESULTS. The bond strength values of A and S were significantly higher than those of N (P<.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG (P<.001). CONCLUSION. The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin.

Influence of ITO Thickness on the Deformation and Cracking Behaviors of ITO/PET Sheets (ITO층의 두께에 따른 ITO/PET sheet의 변형거동 및 균열 형성 거동)

  • Kim, Jin-Yeol;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this study, the stress-strain response and the cracking behaviors of ITO film on a PET substrate are investigated. The cracking behaviors of ITO thin films deposited on a thermoplastic semi-crystalline polymer developed for flexible display applications was investigated by means of tensile experiments equipped with an electrical measurement apparatus and an in-situ optical microscope. Electrical resistance increased gradually in the elastic-to-plastic transition region of the stress strain curves and cracks formed. Numerous cracks were found in this region, and the increase of the resistance was linked to the cracking of ITO thin films. Upon loading, the initial cracks perpendicular to the tensile axis were observed at about 1% of the total strain. They propagated to the entire sample width as the strain increased. The spacing between the horizontal cracks is thought to be determined by the fracture strength and the thickness of the ITO film as well as by the interfacial strength between the ITO and PET. The effect of the strain rate on the cracking behavior was also investigated. The crack density increased as the strain increased. The spacing between the horizontal cracks (perpendicular to the stress axis) increased as the strain rate decreased. The increase of the crack density as the strain rate decreased can be attributed to the higher fraction of the plastic strain to the total strain at a given total strain. The higher critical strain for the onset of the increase in the resistance and the crack initiation of the ITO/PET with a thinner ITO film (300 ohms/sq.) suggests a higher strength of the thinner ITO film.

Properties of Unsaturated Polyester Mortar Using Expanded Polystyrene as a Shrinkage-Reducing Additive (발포 폴리스티렌 수지를 수축저감제로 이용한 불포화 폴리에스테르 모르타르의 특성)

  • 조영국;최낙운;소양섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.30-37
    • /
    • 2001
  • Generally, polymer mortar made with unsaturated polyester(UP) resin has a high curing shrinkage. This is an inadequate as repair material and construction products that have been widely used for years recently. To overcome these problems, polymer researchers and engineers have used shrinkage-reducing additives, which are usually specific thermoplastic polymers. The objective of this study is to evaluate the effects of shrinkage-reducing additive on the curing shrinkage and strengths of UP mortar. UP mortars are prepared with expanded polystyrene(EPS) ratio in styrene monomer(SM), (EPS/PS, PS=EPS+SM), and the ratio of total polystyrene resin(PS) to UP resin, (PS/UP). And it is tested for viscosity of UP resin, slump-flow, working life, flexural and compressive strengths, and curing shrinkage tests. From the test results, viscosity of resin for UP mortar increases with increasing PS content. Curing shrinkage of UP mortar is considerably smaller than that of plain UP mortar, nevertheless, reduction in the strengths is not recognized according to adding PS resin. In this study, we can obtain the optimum mix proportions of UP mortar using PS resin which made of waste expanded polystyrene.

Thermal Properties and Molecular Weight Variations due to Thermal History in Segmented Polyurethane Copolymer Blends (세그먼트된 폴리우레탄 블렌드의 열이력에 따른 열적 성질과 분자량 변화)

  • Cha, Yoon-Jong;Park, Dae-Woon;Kim, Hak-Lim;Lee, Han-Sup;Mah, Souk II;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • The variations of the glass transition, melting peaks, molecular weight and its distribution (polydispersity index: PI) due to the annealing temperature and time have been investigated using the thermoplastic segmented polyurethanes (TPUs) and its blends based on the contents of hard segment. The position of the melting peak and its magnitude have been increased with the annealing temperature and time. This may be arised from the rearrangement of the microdomain structure due to the long-range or short-range segmental motion, the order-disorder transition of non-crystalline microphase, the variation of the domain size or the degree of disorder of crystalline structure by given different thermal histories. The annealing temperature and time affected the molecular weights and polydispersity : the number and weight average molecular weights were increased, while the polydispersity index (PI) deceased at certain temperatures : for TPU-35 at $135^{\circ}C$, for TPU-44 at $170^{\circ}C$ and for TPU-53 at $180^{\circ}C$. The temperatures which give the variations in molecular weights and in PIs are consistent with the annealing temperatures of which $T_3$ solely exists for each sample. Thus it is suggested that the chain dissosiation and recombination simultaneously occur at the above mentioned temperature for each sample.

  • PDF

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

Effect of Compatibilizers on the Morphological, Mechanical and Rheological Properties of PP/PCL and TPO/PCL Blends (상용화제의 첨가에 따른 PP/PCL 블렌드와 TPO/PCL 블렌드의 기계적 물성 모폴로지 및 유변학적 물성)

  • Lee, Yun-Kyun;Kim, Min-Soo;Kim, Woo-Nyon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.342-347
    • /
    • 2011
  • The effects of compatibilizers on the mechanical and rheological properties of PP/PCL and TPO/PCL blends have been studied. The thermoplastic polyolefin (TPO) consists of PP (80 wt%), EPDM (15 wt%) and Talc (5 wt%). Maleic anhydride grafted polypropylene (PP-g-MAH) and maleic anhydride grafted styrene-(ethylene-co-butene)-styrene copolymer (SEBS-g-MAH) were used as compatibilizers. In mechanical properties of PP/PCL and TPO/PCL blends, tensile strength was increased when PP-g-MAH was used as a compatibilizer, and impact strength was increased when SEBS-g-MAH was used as a compatibilizer. From the results of SEM morphology of PP/PCL blend, PCL droplet size was decreased by the addition of PP-g-MAH. From the results of rheological property, complex viscosity of the PP/PCL and TPO/PCL blends did not change appreciably when the compatibilizers were added. From the results of mechanical, morphological and rheological properties of the blends, PP-g-MAH acted as a compatibilizer to increase the tensile strength of the PP/PCL and TPO/PCL blends. While SEBS-g-MAH acted as a impact modifier to increase the impact strength of the PP/PCL and TPO/PCL blends.

Radiation Resistance and Fabrication of Carbon Fiber Reinforced Thermoplastic Composites by Electropolymerization (전기중합법에 의한 열가소성 수지 탄소섬유 강화 복합재료의 제조와 내방사선성)

  • Park, Minho;Kim, Minyoung;Kim, Wonho;Cho, Wonjei
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.489-501
    • /
    • 1997
  • Electropolymerization of 2-vinylnaphthalene (2-VN) and methylmethacrylate (MMA) with high radiation resistance property was conducted on the surfaces of carbon fibers by using a nonaqueous solution of comonomers dissolved in N,N-dimethylformamide containing sodium nitrate as a supporting electrolyte. The fabrication of carbon fiber/2-VN/MMA prepreg was performed electrochemically in 1:1 comonomer solution. Electropolymerization was conduced by changing the current density, initial comonomer concentration, and reaction time. The weight gain on the surface of the carbon fibers was measured by thermogravimetric analyser (TGA). The highest weight gain of 50 wt% was obtained at 600mA/g~800mA/g current density range, but the weight gain was rapidly decreased above 800mA/g current density. The weight gain was increased with the concentration of comonomer, while the concentration of electrolyte had almost no effect on the weight gain. At 300mA/g current density, weight gain rate was increased abruptly to the initial 30 minutes of reaction time. After that the rate was decreased due to the generation of gas bubbles. In order to check the effect of coated polymers on the radiation resistance, morphology changes before and after $\gamma$-ray irradiation was investigated for the composites.

  • PDF

Synthesis and Application of Sorbic Acid Grafted Hydrogenated Dicyclopentadiene Hydrocarbon Resin (소르빅산 변성 수소첨가 DCPD계 석유수지의 합성 및 응용)

  • Kong, Won Suk;Park, Jun Hyo;Yoon, Ho Gyu;Lee, Jae Wook
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • Hydrocarbon resins, which are defined as low molecular weight, amorphous, and thermoplastic polymers, are widely used as tackifier for various types of adhesives, as processing aids in rubber compounds, and as modifiers for plastics polymers such as isotactic polypropylene. Typically, hydrocarbon resins are non-polar, and thus highly compatible with non-polar rubbers and polymer. However, they are poorly compatible with polar system, such as acrylic copolymer, polyurethanes, and polyamides. Moreover, recently the raw materials of hydrocarbon resin from naphtha cracking had been decreased because of light feed cracking such as gas cracking. To overcome this problem, in this study, novel hydrocarbon resins were designed to have a highly polar chemical structure which material is sustainable. And, it was successfully synthesized by Diels-Alder reaction of dicyclopentadiene monomer and sorbic acid from blueberry as renewable resources. Acrylic resins were formulated with various tackifiers solution including sorbic acid grafted hydrogenated dicyclopentadiene hydrocarbon resins in acrylic adhesive and rolling ball tack, loop tack, $180^{\circ}$ peel adhesion strength, and shear adhesion strength were measured. The properties depend on the softening point and polar content of tackifiers.