DOI QR코드

DOI QR Code

Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer

  • Koodaryan, Roodabeh (Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences) ;
  • Hafezeqoran, Ali (Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences)
  • 투고 : 2016.05.28
  • 심사 : 2016.09.28
  • 발행 : 2016.12.30

초록

PURPOSE. Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. MATERIALS AND METHODS. 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (${\alpha}=.05$). RESULTS. The bond strength values of A and S were significantly higher than those of N (P<.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG (P<.001). CONCLUSION. The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin.

키워드

참고문헌

  1. Meng GK, Chung KH, Fletcher-Stark ML, Zhang H. Effect of surface treatments and cyclic loading on the bond strength of acrylic resin denture teeth with autopolymerized repair acrylic resin. J Prosthet Dent 2010;103:245-52. https://doi.org/10.1016/S0022-3913(10)60038-8
  2. Ucar Y, Akova T, Aysan I. Mechanical properties of polyamide versus different PMMA denture base materials. J Prosthodont 2012;21:173-6. https://doi.org/10.1111/j.1532-849X.2011.00804.x
  3. Fueki K, Ohkubo C, Yatabe M, Arakawa I, Arita M, Ino S, Kanamori T, Kawai Y, Kawara M, Komiyama O, Suzuki T, Nagata K, Hosoki M, Masumi S, Yamauchi M, Aita H, Ono T, Kondo H, Tamaki K, Matsuka Y, Tsukasaki H, Fujisawa M, Baba K, Koyano K, Yatani H. Clinical application of removable partial dentures using thermoplastic resin-part I: definition and indication of non-metal clasp dentures. J Prosthodont Res 2014;58:3-10. https://doi.org/10.1016/j.jpor.2013.12.002
  4. Kohli S, Bhatia S. Flexural properties of polyamide versus injection-molded polymethylmethacrylate denture base materials. Eur J Prosthodont 2013;1:63-7.
  5. Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Prosthodont 2013;5:153-60. https://doi.org/10.4047/jap.2013.5.2.153
  6. Alkurt M, Yesil Duymus Z, Gundogdu M. Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin. J Prosthet Dent 2014;111:71-8. https://doi.org/10.1016/j.prosdent.2013.09.007
  7. Fueki K, Ohkubo C, Yatabe M, Arakawa I, Arita M, Ino S, Kanamori T, Kawai Y, Kawara M, Komiyama O, Suzuki T, Nagata K, Hosoki M, Masumi S, Yamauchi M, Aita H, Ono T, Kondo H, Tamaki K, Matsuka Y, Tsukasaki H, Fujisawa M, Baba K, Koyano K, Yatani H. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures. J Prosthodont Res 2014;58:71-84. https://doi.org/10.1016/j.jpor.2014.03.002
  8. Kim JH, Choe HC, Son MK. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture. Dent Mater J 2014;33:32-8. https://doi.org/10.4012/dmj.2013-121
  9. Katsumata Y, Hojo S, Hamano N, Watanabe T, Yamaguchi H, Okada S, Teranaka T, Ino S. Bonding strength of autopolymerizing resin to nylon denture base polymer. Dent Mater J 2009;28:409-18. https://doi.org/10.4012/dmj.28.409
  10. Sarac YS, Sarac D, Kulunk T, Kulunk S. The effect of chemical surface treatments of different denture base resins on the shear bond strength of denture repair. J Prosthet Dent 2005;94:259-66. https://doi.org/10.1016/j.prosdent.2005.05.024
  11. Takahashi Y, Chai J. Assessment of shear bond strength between three denture reline materials and a denture base acrylic resin. Int J Prosthodont 2001;14:531-5.
  12. Mutluay MM, Ruyter IE. Evaluation of adhesion of chairside hard relining materials to denture base polymers. J Prosthet Dent 2005;94:445-52. https://doi.org/10.1016/j.prosdent.2005.08.011
  13. Azevedo A, Machado AL, Giampaolo ET, Pavarina AC, Vergani CE. The effect of water immersion on the shear bond strength between chairside reline and denture base acrylic resins. J Prosthodont 2007;16:255-62. https://doi.org/10.1111/j.1532-849X.2007.00188.x
  14. Takabayashi Y. Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dent Mater J 2010;29:353-61. https://doi.org/10.4012/dmj.2009-114
  15. Brown HR. Adhesion of polymers. MRS Bull 1996;21:24-7.
  16. Meloto CB, Silva-Concilio LR, Rodrigues-Garciai RC, Canales GT, Rizzatti-Barbosa CM. Effect of surface treatments on the bond strength of different resin teeth to complete denture base material. Acta Odontol Latinoam 2013;26:37-42.
  17. Heikkinen TT, Lassila LV, Matinlinna JP, Vallittu PK. Effect of operating air pressure on tribochemical silica-coating. Acta Odontol Scand 2007;65:241-8. https://doi.org/10.1080/00016350701459753
  18. Kern M, Thompson VP. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. J Prosthet Dent 1994;71:453-61. https://doi.org/10.1016/0022-3913(94)90182-1
  19. Nirmala R, Panth HR, Yi C, Nam KT, Park SJ, Kim HY, Navamathavan R. Effect of solvents on high aspect ratio polyamide-6 nanofibers via electrospinning. Macromol Res 2010;18:759-65. https://doi.org/10.1007/s13233-010-0808-2
  20. Jacques B, Werth M, Merdas I, Thominette F, Verdu J. Hydrolytic ageing of polyamide 11. 1. Hydrolysis kinetics in water. Polymer 2002;43:6439-47. https://doi.org/10.1016/S0032-3861(02)00583-9
  21. Richaud E, Derue I, Gilormini P, Verdu J, Vaulot C, Coquillat M, Desgardin N, Vandenbrouke A. Plasticizer effect on network structure and hydrolytic degradation. Eur Polym J 2015;69:232-46. https://doi.org/10.1016/j.eurpolymj.2015.05.031
  22. Serpe G, Chaupart N, Verdu J. Ageing of polyamide 11 in acid solutions. Polymer 1997;38:1911-7. https://doi.org/10.1016/S0032-3861(96)00705-7
  23. Murthy NS. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. J Polym Sci Part B: Polym Phys 2006;44:1763-82. https://doi.org/10.1002/polb.20833
  24. Hocker S, Rhudy AK, Ginsburg G, Kranbuehl DE. Polyamide hydrolysis accelerated by small weak organic acids. Polym 2014;55:5057-64. https://doi.org/10.1016/j.polymer.2014.08.010
  25. El-Mazry C, Correc O, Colin X. A new kinetic model for predicting polyamide 6-6 hydrolysis and its mechanical embrittlement. Polym Degrad Stab 2012;97:1049-59. https://doi.org/10.1016/j.polymdegradstab.2012.03.003
  26. Bernstein R, Derzon DK, Gillen KT. Nylon 6.6 accelerated aging studies: thermal-oxidative degradation and its interaction with hydrolysis. Polym Degrad Stab 2005;88:480-8. https://doi.org/10.1016/j.polymdegradstab.2004.11.020
  27. Meyer A, Jones N, Lin Y, Kranbuehl D. Characterizing and modeling the hydrolysis of polyamide-11 in a pH 7 water environment. Macromolecules 2002;35:2784-98. https://doi.org/10.1021/ma010541o
  28. Chaupart N, Serpe G, Verdu J. Molecular weight distribution and mass changes during polyamide hydrolysis. Polymer 1998;39:1375-80. https://doi.org/10.1016/S0032-3861(97)00414-X
  29. Sirisha K, Rambabu T, Ravishankar Y, Ravikumar P. Validity of bond strength tests: A critical review-Part II. J Conserv Dent 2014;17:420-6. https://doi.org/10.4103/0972-0707.139823
  30. Lung CY, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater 2012;28:467-77. https://doi.org/10.1016/j.dental.2012.02.009
  31. Sarmento HR, Campos F, Sousa RS, Machado JP, Souza RO, Bottino MA, Ozcan M. Influence of air-particle deposition protocols on the surface topography and adhesion of resin cement to zirconia. Acta Odontol Scand 2014;72:346-53. https://doi.org/10.3109/00016357.2013.837958
  32. Sakai T, Sembokuya H, Kubouchi M, Tsuda K. The reciprocal influence between ion transport and degradation of PA66 in acid solution. Polym Degrad Stab 2006;91:2595-604. https://doi.org/10.1016/j.polymdegradstab.2006.05.018
  33. Ward JH, Furman K, Peppas NA. Effect of monomer type and dangling end size on polymer network synthesis. J Appl Polym Sci 2003;89:3506-19. https://doi.org/10.1002/app.12519
  34. Vallittu PK. Interpenetrating polymer networks (IPNs) in dental polymers and composites. J Adhes Sci Technol 2009;23:961-72. https://doi.org/10.1163/156856109X432785
  35. Liu S, Zhao N, Rudenja S. Surface interpenetrating networks of poly(ethylene terephthalate) and polyamides for effective biocidal properties. Macromol Chem Phys 2010;211:286-96. https://doi.org/10.1002/macp.200900381
  36. Wolff D, Geiger S, Ding P, Staehle HJ, Frese C. Analysis of the interdiffusion of resin monomers into pre-polymerized fiber-reinforced composites. Dent Mater 2012;28:541-7. https://doi.org/10.1016/j.dental.2011.12.001

피인용 문헌

  1. Nonthermal plasma on the shear bond strength of relining resin to thermoplastic denture base resin vol.56, pp.3, 2018, https://doi.org/10.4047/jkap.2018.56.3.199
  2. Denture Liners: A Systematic Review Relative to Adhesion and Mechanical Properties vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/6913080
  3. Influence of Various Chemical Surface Treatments, Repair Materials, and Techniques on Transverse Strength of Thermoplastic Nylon Denture Base vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/8432143
  4. Comparison of shear bond strengths of different types of denture teeth to different denture base resins vol.12, pp.6, 2016, https://doi.org/10.4047/jap.2020.12.6.376