• Title/Summary/Keyword: Thermometer calibration

Search Result 21, Processing Time 0.028 seconds

Calibration by Comparison and Uncertainty Assessment of Industrial Thermometers at the Boiling Point of Nitrogen (질소의 끓는점에서의 산업용 온도계 비교 교정과 불확도 평가)

  • Yang, Inseok;Gam, Kee Sool;Joung, Wukchul;Kim, Yong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.404-409
    • /
    • 2013
  • We devised calibration procedure for industrial thermometers by a comparison method at the boiling point of nitrogen (${\sim}-196^{\circ}C$). The uncertainty of the calibration was 4 mK (k = 2). As experimentally demonstrated in this work, the effect of the atmospheric pressure on the boiling point of nitrogen can be easily detected by the thermometer. Therefore, when the boiling point of nitrogen is used for calibration of thermometer by comparison, either a reference thermometer must be used to provide the reference temperature or the effect of atmospheric pressure should be carefully considered. The use of a copper block with a large thermal mass soaked into the liquid nitrogen was proven to be more reliable, and the stability of the temperature immersed into the copper block was 1.4 mK. The temperatures at the thermometer wells, evaluated by the crossed-measurement method to compensate for the inaccuracy of the thermometers and the linear drift of the temperature of the copper block, were equivalent within 0.23 mK of standard uncertainty.

Development of Radiation Thermometer using InSb Photo-detector (인듐안티모나이드(InSb) 소자를 이용한 적외선 방사온도 계측시스템의 개발연구)

  • Hwang, Byeong-Oc;Lee, Won-Sik;Jhang, Kyung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.46-52
    • /
    • 1995
  • This paper proposes methodologies for the development of radiation thermometer using InSb photo-detector of which spectral sensitivity is excellent over the wave length range of 2 .mu. m .approx. 5 .mu. m. The proposed radiation thermometer has broad measurement range from normal to high, up to more than 1000 .deg. C, with high accuracy, and can measure temperature on the material surface or heat emission noncontactely with high speed. Optical system was consisted of two convex lens with foruslength of 15.2mm for infrared lay focusing, Ge filter to cut the short wave length components and sapphire filter to cut the long wave length components. The cold shielded was installed in the whole surface of the light-absorbing element to remove the error- mometer, calibration using black body furnace which has temperature range of 90 .deg. C .approx. 1100 .deg. C was carried out, and temperature calaibration curve was obtained by exponential function curvefitting. The result shows maximum error less than 0.24%(640K .+-. 1.6K) over the measurement range of 90 .deg. C .approx. 700 .deg. C, and from this result the usefulness of the developed thermometer has been confirmed.

  • PDF

Experimental method and evaluation of the calibration capability for the national calibration centers using the platinum resistance temperature sensors (백금저항온도센서를 이용한 국가교정기관의 교정능력 평가 및 실험방법)

  • Gam, Kee-Sool;Yoo, Sung-Ho;Kim, Sung-Min;Lee, In-Sick
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.231-236
    • /
    • 2005
  • Calibration capability was evaluated using the reference-grade platinum resistance thermometer (PRT) in the temperature range of $-50^{\circ}C$ to $250^{\circ}C$ for the national calibration centers. The reference-grade PRT was calibrated at the several fixed points, which was composed by the freezing points of Sn, In, the melting point of Ga and the triple point of water and Hg, before and after the round-robin test (RRT) experiments. The temperature scale of reference-grade PRT was compared to the local standard PRT's using the system of the national calibration centers. $E_{n}$ values was calculated by the temperature difference between the reference-grade PRT and the local standard PRT, and the best measurement capability. Finally, the capability of the national calibration centers was evaluated by the $E_{n}$ values.

Performance Assessment on Temperature Calibration Capability of the Calibration Laboratories Using High-Precision Platinum Resistance Thermometers (고정밀 백금저항온도계를 이용한 교정기관의 온도교정능력 수행평가)

  • Gam, Kee Sool;Lee, Young Hee;Yang, Inseok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.415-420
    • /
    • 2013
  • Calibration capabilities for thermometer calibration by comparison method were assessed using high-precision industrial platinum resistance thermometers (IPRT). It was found in the performance assessment that out of 31 laboratories who participated, 28 laboratories resulted magnitude of En number less than 1 at every calibration points they submitted results in the range from 50 to $500^{\circ}C$. The results of about 75% of the laboratories showed the difference from the assigned values less than 1/10 of the tolerance level of the class B IPRT. This indicates that the participating calibration laboratories performed with satisfactory level that was enough to calibrate IPRTs to significant precision. The sensors used in this work were manufactured and chosen by the criteria of long-term instability less than 4 mK and hysteresis less than 8 mK in the temperature range used in this work. Furthermore, the change in the resistance of the sensors in the calibration temperature range were less than the uncertainty of the calibration, 25 mK (k=2).

Establishment of Comparison Calibration Equipment for Infrared-radiation Thermometers Below ℃ (℃ 이하 적외선 복사온도계 비교 교정장치 구축)

  • Yoo, Yong Shim;Kim, Bong-Hak
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.2
    • /
    • pp.70-76
    • /
    • 2018
  • Comparison calibration equipment for infrared-radiation thermometers below $0^{\circ}C$ has been established, using a TRT2 (transfer radiation thermometer 2, HEITRONICS) as a transfer standard and an ME30 (Model: ME30, HEITRONICS) as a variabletemperature blackbody. The TRT2 was calibrated using three fixed points (Ice ($0.01^{\circ}C$), In ($156.5985^{\circ}C$), and Sn ($231.928^{\circ}C$)) and the Planckian Sakuma-Hattori equation, and including the interpolation and extrapolation errors at $-50^{\circ}C$ in the uncertainty. The pneumatic lid is installed upon opening of the ME30 and is opened for only 30 seconds for measuring the radiation temperature, which prevents formation of ice in the ME30 and also reduces the calibration time to half. The farther away from the $0{\sim}232^{\circ}C$ region, the larger the uncertainty of the comparison calibration equipment becomes. The expanded uncertainty of the comparison calibration equipment was estimated as 0.26 K at $-20^{\circ}C$.

Improved Interpolating Equation for Industrial Platinum Resistance Thermometer (산업용 백금저항온도계를 위한 향상된 내삽식)

  • Yang, In-Seok;Kim, Yong-Gyoo;Gam, Kee-Sool;Lee, Young-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.109-113
    • /
    • 2012
  • We propose an improved interpolating equation to express temperature-resistance characteristics for modern industrial platinum resistance thermometers (PRTs). Callendar-van Dusen equation which has been widely used for platinum resistance thermometer fails to fully describe temperature characteristics of high quality PRTs and leaves systematic residual when the calibration point include temperatures above $300^{\circ}C$. Expanding Callendar-van Dusen to higher-order polynomial drastically improves the uncertainty of the fitting even with reduced degrees of freedom of the fitting. We found that in the fourth-order polynomial fitting, the third-order and fourth-order coefficients have a strong correlation. Using the correlation, we suggest an improved interpolating equation in the form of fourth-order polynomial, but with three fitting parameters. Applying this interpolating equation reduced the uncertainty of the fitting to 32 % of that resulted from the traditional Callendar-van Dusen. This improvement was better than that from a simple third-order polynomial despite that the degrees of the freedom of the fitting was the same.

Precise Temperature Control by Adjusting Flow of Liquid Nitrogen (액체 질소의 흐름 조절을 통한 저온 정밀 온도 제어)

  • Yang, Inseok;Lee, Jee-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 2016
  • We devised a method to control the temperature of a liquid bath as low as $-100^{\circ}C$ using the duty cycle control of a solenoid valve. The solenoid valve controls the flow of liquid nitrogen that we used as a cryogen in this system. By controlling the duty cycle of a solenoid valve using feedback from the measured temperature of the liquid bath, we were able to achieve temperature stability within ${\pm}19mK$ around $-100^{\circ}C$. We also demonstrated that by taking average values of the temperature readings for sequence of measurements from more than one thermometer, it is possible to use this system for the calibration of thermometers within 3 mK. This system and the control method can be used for the precise temperature control in the range between $0^{\circ}C$ and $-100^{\circ}C$, where commercially available precision baths are much expensive and hard to be built in customized configurations.

An Experimental Study on the design of the thermister thermometer (전기온도계 제작에 관한 실험적 연구)

  • Yun, Dork-Ro;Kim, Ik-Su
    • Journal of Preventive Medicine and Public Health
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 1973
  • The study in the fild of medical instrument has been out of the interest by any of the life scientist in Korea. Especially, the recent developments in the medical electromics are remarkable one. Authors planned this study to ascertain the possibility of setting up the thermister thermometer with available accessories of demestic prouducts including some specific foreign assembly parts. By proper use of the thermister as one of the wheatstone bridge, we could detect tile resistance variations due to the environmental temperature variace. The intensive care for the bridge circuit and compensation scheme was required. The calibration procedure adopted here makes it possible to read the current as the temperature. The temperature range was determined by the examination and construction of the graph of the resistance-temperature variation. The determination of electric current, available ambient-temperature, the reduction of excessive current and self-heating of the thermister were made. Renovation in response-velocity was under taken too. This electronic thermometer was designed and assembled by the circuitry developed in accordance with the maximum availability of domestic products with some foreign-made parts. The result of our experiment showed very stable function and proved to be the most promissing item in the actual application as long as the thermistor thermister is concerned.

  • PDF

Report of Present Status of Calibration for Domestic Radiation Measurements Instruments (국내 방사선 측정장비 보유 현황 및 교정 현황 조사)

  • Lim, Sangwook;Choi, Jinho;An, Sohyun;Cho, Kwang Hwan;Lee, Sang Hoon;Lee, Rena;Cho, Sam Ju
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2016
  • Periodical calibrations of radiation detectors are important for accurate quality assurance of therapeutic linac. The measuring instruments such as ion-chamber, thermometer, barometer, and survey meter should be calibrated periodically. Period of calibration for these instruments is suggested 6 month to one year in Korea and two years in other countries nowadays. Therefore, the determination of reasonable period for calibration is needed. In this study, we plan to utilize the results of these survey; frequent in use, how to use and stability of instruments, to determine the optimized period of calibration for the instruments in the departments of radiation oncology in Korea based on the ILAC-G24. The SurveyMonkey web-based survey tool was used and the objects of survey were 18 department of radiation oncology in university hospitals, and 15 departments were answered. The 64 questionnaires which supposed to be answered in 50 minutes were classified as the information of candidates, the thermometer, the barometer, the surveymeter, and the ion-chamber. The thermometers and the barometers were not under periodical calibration for more than half of candidates. The periods of calibration of surveymeters were 6 month to 1 year. We expect that the calibration period can be determined based on these survey results.

Method for Measuring Mechanical Behaviors of Thin Films at High Temperature (고온에서 박막의 기계적 거동 측정 방법)

  • Lim, Sang-Chai;Joo, Jae-Hwang;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 2003
  • Recently, the authors have developed a new material test system fur thin film at the high temperature. It is so compact and precise with sub micron resolution that it seems to be a useful tool fur research of the oxide film growth, its mechanical behavior and failure mechanism. To this end. in this paper three methologies are described for in-situ monitoring of the displacement & strain and the temperature, the oxide thickness. These are the Laser Speckle analysis with digital image correlation technique, the two-color infra-red thermometer and the laser reflection interferometry respectively. The calibration results and some issues which should be addressed for practical application are presented.