• Title/Summary/Keyword: Thermogravimetric analyzer

Search Result 168, Processing Time 0.026 seconds

Characteristics of CO2 Conversion Using Cobalt Ferrite Powders (코발트계 페라이트 분말을 이용한 이산화탄소 전환특성)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1008-1014
    • /
    • 2012
  • The amount of domestic carbon dioxide emissions is more than 600 million tons/year. The emitted $CO_2$ should be captured and stored, however, suitable storage sites have not been found yet. A lot of researches on the conversion of captured carbon dioxide to useful carbon source have been conducted. The purpose of this study is to convert stable carbon dioxide to useful resources using less energy. For this purpose reducing gas and metallic oxide (activator) are required. Hydrogen was used as reducing gas and cobalt ferrite was used as activator. Considering that activator has different physical properties depending on synthesis methods, activator was prepared by hydrothermal synthesis and solid method. Decomposition characteristics of carbon dioxide were investigated using synthesized powders. Temperature programmed reduction/oxidation (TPR/TPO) and thermogravimetric analyzer (TGA) device were used to observe the decomposition characteristics of carbon dioxide. Activator prepared by solid method with 5 and 10 wt% CoO content showed an excellent performance. In TGA experiments with samples prepared by the solid method, reduction by hydrogen was 29.0 wt% and oxidation by $CO_2$ was highest in 27.5 wt%. 95% of adsorbed $CO_2$ was decomposed with excellent oxidation-reduction behaviors.

Investigation on Combustion Characteristics of Sewage Sludge using Pilot-scale Bubbling Fluidized Bed Reactor (파일럿 규모 기포 유동층 반응기를 이용한 하수 슬러지 연소 특성 분석)

  • Kim, Donghee;Huh, Kang Y.;Ahn, Hyungjun;Lee, Youngjae
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.331-342
    • /
    • 2017
  • To estimate the combustion characteristics of sewage sludge and wood pellet, thermogravimetric analysis (TGA) was conducted. As TGA results, combustion characteristics of sewage sludge was worse than wood pellet. In ash fusion temperature (AFT) analysis, slagging tendency of sewage sludge is very high compared to wood pellet. And also, the bubbling fluidized bed reactor with a inner diameter 400 mm and a height of 4300 mm was used for experimental study of combustion characteristics fueled by sewage sludge and wood pellet. The facility consists of a fluidized bed reactor, preheater, screw feeder, cyclone, ash capture equipment and gas analyzer. The thermal input of sewage sludge cases were $54.5{\sim}96.5kW_{th}$, in case of wood pellet experiment, it was $96.1kW_{th}$. As experiment results, the $NO_x$ emission of sewage sludge was averagely about 10 times the $NO_x$ emission of wood pellet. And also CO emission of sewage sludge is about 3.5 times of wood pellet. Lastly as a result of analysis of captured ash in cyclone, the combustion efficiency of all cases were over 99%, but the potential for slagging/fouling was high at all cases by component analysis of ash.

A Study on Reactivity of Zinc-Based Sorbents (아연계흡수제의 반응특성 규명연구)

  • 연장희;이영우;이창근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.24-34
    • /
    • 1998
  • In this research, effects of the types and amounts of binders and additives on desulfurization and regeneration reactivities of zinc titanate were investigated. Bentonite and kaolinite were used as binders and Mo-based, Ni-based, and Cu-based compounds were used as additives. A thermogravimetric analyzer (TGA) was utilized to investigate reactivities of desulfurization and regeneration for each sorbent. Two-cycle reactions of desulfurization-regeneration were performed in the TGA reactor. Results of XRD analysis showed that all sorbents had the crystalline phases of $Zn_2TiO_2$ and $Zn_2Ti_3O_8$ irrespective of the type and amount of binder and additive. Kaolinite-bound sorbents gave higher surface areas than bentonite-bound ones and the surface areas and pore volumes of sorbents increased with amount of binder increased. It was found that the most suitable temperatures for desulfurization and regeneration were 680$^{\circ}$C and 730$^{\circ}$C, respectively, and the sorbent prepared by the addition of 3 mol% CuO showed the best performance in terms of desulfurization and regeneration. Nio-added sorbents had good regenerability whereas $MoO_3-based$ sorbents showed poor performance. In cycle experiments in a fixed bed reactor 3 mol% CuO-added sorbents showed high reactivity.

  • PDF

Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor (합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자 선정)

  • Ryu, Ho-Jung;Kim, Ji-Woong;Jo, Wan-Kuen;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.506-514
    • /
    • 2007
  • To select the best oxygen carrier particle for syngas fueled chemical-looping combustor, the reduction reactivity and carbon deposition characteristics were determined in a thermogravimetric analyzer. Four kinds of oxygen carrier particles (NiO/bentonite, $NiO/LaAl_{11}O_{18}$, $Co_xO_y/CoAl_2O_4$, $NiO/NiAl_2O_4$) were tested with the simulated syngas (30% $H_2$, 10% $CO_2$, 60% CO) as a reduction gas. With each of these particles, the maximum conversion and oxygen transfer capacity increase with increasing the reduction temperature At the given experimental range, the optimum operating temperature to maximize oxygen transfer rate is found to be $900^{\circ}C$ and carbon deposition on the particles could avoid at the temperature above $800^{\circ}C$. Among four kinds of oxygen carrier particles, the NiO-based particles exhibits better reactivity than the CoO-based particle. Moreover, the NiO/bentonite particle produces the best reactivity based on the oxygen transfer rate and the degree of carbon deposition. The measured oxygen transfer rate increases as the metal oxide content in NiO/bentonite particle is increased thereby higher metal oxide contents could provide stable operation of chemical-looping combustor.

Studies on the Thermal and Rheological Properties of Polypropylene/Starch-MB Blends (폴리프로필렌/옥수수전분 블렌드의 열적 유변학적특성 연구)

  • Kim, Youn Cheol;Lee, Chang-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.557-561
    • /
    • 2007
  • Polypropylene (PP)/corn starch master batch (starch-MB) blends with different PP compositions of 40, 50, 60, and 80 wt% were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The chemical structures and thermal properties of the PP/starch-MB blends were investigated by FT-IR, differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). The chemical structure was confirmed by the existence of hydroxy group. There was no district change in melting temperature and melting enthalpy, and TGA curve indicated a decrease in degradation temperature with starch-MB content. The porosity change of blend was measured by scanning electron microscope (SEM), the degree of porosity on the blend surface increased with the starch-MB content. The rheological properties indicated an increase in complex viscosity, shear thinning tendency and elasticity with the starch-MB concentration. These effects were confirmed by an oscillatory viscometer at $200^{\circ}C$. From these results, it is found that 40 wt% is the optimum starch-MB concentration. The fiber was fabricated from PP60/MB40 with 40 wt% starch-MB and the porosity and tensile properties were investigated.

Thermal and Electrical Behaviors of Polyethylene Oxide/Polyaniline Fibers Prepared by Electrospinning Method (전기방사법에 의해 제조된 폴리에틸렌옥사이드/폴리아닐린 섬유의 열적 및 전기적 거동)

  • Kim, Seok;Cho, Mi-Hwa;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • In this study, PEO blend fibers mixed with polyaniline (PANI)/10-camphor sulfonic acid (CSA) and PANI/dodecylbenzene sulfonic acid (DBSA) were electro spun to investigate the influence of PANI content. CSA and DBSA were used as a functionalized doping acid having a bulky volume. PANI/PEO blend solution was prepared by dissolving PEO and PANI doped with CSA or DBSA. The thermal properties were measured by thermogravimetric analyzer (TGA). As a result, with increasing of the PANI content in PANI/CSA and PANI/DBSA, although initial decomposition temperature (IDT) was decreased, thermal stability was increased due to the increase of $A^*{\cdot}K^*$ and integral procedural decomposition temperature (IPDT). The electrical conductivities measured by the 4-probe method. The electric conductivity was increased with increasing of PANI content in PANI/CSA and PANI/DBSA. However, electrical conductivity did not change significantly beyond 30% content of PANI. From CV results, PANI/CSA showed the better defined peak shpae and higher peak current density compared to PANI/DBSA. This was probably related to the slightly higher electrical conductivity or better morphology for easy charge transfer in the case of PANI/CSA.

Electron Beam-Induced Modification of Poly(dimethyl siloxane) (전자빔을 이용한 Poly(dimethyl siloxane)의 개질)

  • Kang, Dong-Woo;Kuk, In-Seol;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang;Mun, Sung-Yong;Lee, Young-Moo
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.157-160
    • /
    • 2011
  • In this paper, poly (dimethyl siloxane) (PDMS) was modified using electron beam irradiation and its property was investigated. PDMS sheets prepared using a conventional thermal curing method were irradiated by electron beams at absorbed doses between 20 and 200 kGy and their properties were characterized using swelling degree and contact angle measurements, universal testing machine (UTM), thermogravimetric analyzer (TGA), and X -ray photoelectron spectrometer (XPS). The results of the swelling degree measurements, UTM, and TGA revealed that the swelling degree of the irradiated PDMS sheets was reduced down to 24% in comparison to the control sheet, and their compression strength and thermal decomposition temperature increased up to maximum 2.5 MFa and $10^{\circ}C$, respectively, due to the increase in crosslinking density by irradiation. In addition, on the basis of the results of contact angle measurements and XPS, the wettability of the PDMS sheets was enhanced up to 24% owing to the generation of hydrophilic functional groups on the PDMS surface by oxidation during electron beam irradiation.

Oxidation Behavior of Simudated Metallic U-Nb Alloys in Air (모의 금속전환체 U-Nb 합금의 공기중 산화거동)

  • Lee Eun-Pyo;Ju June-Sik;You Gil-Sung;Cho il-Je;Kook Dong-Hak;Kim Ho-Dong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.239-244
    • /
    • 2004
  • In order to enhance an oxidation resistance of the pure uranium metal under air condition, a small quantity of niobium(Nb) which is known to mitigate metal oxidation is added into uranium metal as an alloying element. A simulated metallic uranium alloy, U-Nb has been fabricated and then oxidized in the range of 200 to $300^{\circ}C$ under the environment of the pure oxygen gas. The oxidized quantity in terms of the weight gain(wt%) has been measured with the help of a thermogravimetric analyzer. The results show that the oxidation resistance of the U-Nb alloy is considerably enhanced in comparison with that of the pure uranium metal. It is revealed that the oxidation resistance of the former with the niobium content of 1, 2, 3, and 4 wt% is : 1) 1.61, 7.78, 11.76 and 20.14 times at the temperature of $200^{\circ}C$ ; 2) 1.45, 5.98, 10.08 and 11.15 times at $250^{\circ}C$ ; and 3) 1.33, 4.82, 8.87 and 6.84 times at $300^{\circ}C$ higher than that of the latter, respectively. Besides, it is shown that the activation energy attributable to the oxidation is 17.13~21.92 kcal/mol.

  • PDF

Reaction Characteristics of SOx/NOx Removal Using CuO/γ-Al2O3 Sorbent/Catalyst (CuO/γ-Al2O3 흡수제/촉매를 이용한 SOx/NOx 제거 반응특성)

  • Yoo, Kyung Seun;Kim, Sang Done
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.671-678
    • /
    • 2000
  • Reaction characteristics of simultaneous removal of SOx and NOx have been investigated in a thermogravimetric analyzer and tubular fixed bed reactor using the $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst. Sulfur removal capacity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is largely enhanced above both the temperature of $450^{\circ}C$ and the loading of 6wt% due to the participation of alumina support in a sulfation reaction. The NO reduction efficiency of 8wt% $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst shows the maximum value at $370^{\circ}C$ and then decreases with the increase of reaction temperature due to the oxidation of $NH_3$ gas. The presence of sulfate on the surface of sorbent/catalyst enhances the optimum reaction temperature showing the maximum deNOx efficiency. In the simultaneous removal of SOx and NOx at $250^{\circ}C$. deNOx activity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is rapidly decreased due to the formation of ammonium salts such as $NH_4HSO_4$. In the simultaneous removal reaction of SOx and NOx, the optimum temperature showing the maximum deNOx efficiency increases to $400^{\circ}C$ due to the presence of $SO_2$ gas.

  • PDF

Kinetic Studies of CO2 Gasification by Non-isothermal Method on Fly Ash Char (비등온법에 의한 비산재 촤의 CO2 가스화 특성)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Lee, Jin-Wook;Yun, Yongseung;Kim, Gyoo Tae;Kim, Yongjeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.493-499
    • /
    • 2013
  • For the purpose of utilizing fly ash from gasification of low rank coal, we performed the series of experiments such as pyrolysis and char-$CO_2$ gasification on fly ash by using the thermogravimetric analyzer (TGA) at non-isothermal heating conditions (10, 20 and $30^{\circ}C/min$). Pyrolysis rate has been analyzed by Kissinger method as a first order, the reliability of the model was lower because of the low content of volatile matter contained in the fly ash. The experimental results for the fly ash char-$CO_2$ gasification were analyzed by the shrinking core model, homogeneous model and random pore model and then were compared with them for the coal char-$CO_2$ gasification. The fly ash char (LG coal) with low-carbon has been successfully simulated by the homogeneous model as an activation energy of 200.8 kJ/mol. In particular, the fly ash char of KPU coal with high-carbon has been successfully described by the random pore model with the activation energy of 198.3 kJ/mol and was similar to the behavior for the $CO_2$ gasification of the coal char. As a result, the activation energy for the $CO_2$ gasification of two fly ash chars don't show a large difference, but we can confirm that the models for their $CO_2$ gasification depend on the amount of fixed carbon.