DOI QR코드

DOI QR Code

Investigation on Combustion Characteristics of Sewage Sludge using Pilot-scale Bubbling Fluidized Bed Reactor

파일럿 규모 기포 유동층 반응기를 이용한 하수 슬러지 연소 특성 분석

  • Kim, Donghee (Korea Institute of Industrial Technology) ;
  • Huh, Kang Y. (Department of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Ahn, Hyungjun (Korea Institute of Industrial Technology) ;
  • Lee, Youngjae (Korea Institute of Industrial Technology)
  • Received : 2017.07.06
  • Accepted : 2017.08.29
  • Published : 2017.09.30

Abstract

To estimate the combustion characteristics of sewage sludge and wood pellet, thermogravimetric analysis (TGA) was conducted. As TGA results, combustion characteristics of sewage sludge was worse than wood pellet. In ash fusion temperature (AFT) analysis, slagging tendency of sewage sludge is very high compared to wood pellet. And also, the bubbling fluidized bed reactor with a inner diameter 400 mm and a height of 4300 mm was used for experimental study of combustion characteristics fueled by sewage sludge and wood pellet. The facility consists of a fluidized bed reactor, preheater, screw feeder, cyclone, ash capture equipment and gas analyzer. The thermal input of sewage sludge cases were $54.5{\sim}96.5kW_{th}$, in case of wood pellet experiment, it was $96.1kW_{th}$. As experiment results, the $NO_x$ emission of sewage sludge was averagely about 10 times the $NO_x$ emission of wood pellet. And also CO emission of sewage sludge is about 3.5 times of wood pellet. Lastly as a result of analysis of captured ash in cyclone, the combustion efficiency of all cases were over 99%, but the potential for slagging/fouling was high at all cases by component analysis of ash.

하수 슬러지 고형연료 및 우드 펠렛의 연소 특성을 평가 하기 위하여 열중량 분석(TGA), 회 융점(AFT) 분석, 그리고 회분 성분 분석을 수행하였다. TGA 분석 결과, 하수 슬러지 고형연료의 연소성이 우드 펠렛에 비해 상대적으로 좋지 않았다. 또한 AFT 분석을 통해 하수 슬러지 고형연료의 슬래깅 가능성이 매우 높은 것을 확인하였다. 또한 연소성 평가를 위해 pilot-scale 기포 유동층 반응기를 적용하였으며, 장치는 예열기, 유동층 반응기, 연료 공급장치, 사이클론, 회분 포집 장치, 그리고 가스분석기로 구성되었다. 반응기는 직경 400 mm, 높이 4300 mm이며, 하수 슬러지는 $54.5{\sim}96.5kW_{th}$의 열량으로 실험을 수행하였고 우드 펠렛은 $96.1kW_{th}$ 실험을 수행하였다. 실험 결과, 하수 슬러지 고형연료 연소의 경우 평균적으로 우드 펠렛의 연소 보다 배기가스 중 $NO_x$는 10.1배, CO는 3.5배 높았다. 또한 사이클론에서 포집한 회분을 분석한 결과, 모든 실험 조건에서 연소 효율은 99% 이상이었고, 회분의 성분 분석을 통해 슬래깅/파울링 가능성이 높은 것을 확인하였다.

Keywords

References

  1. Werther, J., and Ogada, T., "Sewage Sludge Combustion," Prog. Energy and Combust. Sci., 25, 55-116 (1999). https://doi.org/10.1016/S0360-1285(98)00020-3
  2. Choung, Y. H., Cho, K. C., Kang, D. H., Kim, Y. K., Park, C. W., and Oh, K. J., "A Study on the Drying and Carbonization of Sewage Sludge in Fluidized Bed Reactor," Korean Soc. Environ. Eng., 28(7), 746-751 (2006).
  3. Otero, M., Diez, C., Calvo, L. F., Garcia, A. I., and Moran, A., "Analysis of the Co-combustion of Sewage Sludge and Coal by TG-MS," Biomass and Bioenergy, 22, 319-329 (2001).
  4. Otero, M., Calvo, L. F., Gil, M. V., Garcia, A. I., and Moran, A., "Co-combustion of Different Sewage Sludge and Coal: A Non-isothermal Thermogravimetric Kinetic Analysis," Bioresour. Technol., 99, 6311-6319 (2008). https://doi.org/10.1016/j.biortech.2007.12.011
  5. Folgueras, M. B., Diaz, R. M., Xiberta, J., and Prieto, I., "Thermogravimetric Analysis of the Co-combustion of Coal and Sewage Sludge," Fuel, 82, 2051-2055 (2003). https://doi.org/10.1016/S0016-2361(03)00161-3
  6. Leckner, B., Amand, L. -E., Lucke, K., and Werther, J., "Gaseous Emissions from Co-combustion of Sewage Sludge and Coal/Wood in a Fluidized Bed," Fuel, 83, 477-486 (2004). https://doi.org/10.1016/j.fuel.2003.08.006
  7. Amand, L. -E., and Leckner, B., "Metal Emissions from Co-combustion of Sewage Sludge and Coal/Wood in Fluidized Bed," Fuel, 83, 1803-1821 (2004). https://doi.org/10.1016/j.fuel.2004.01.014
  8. Kupka, T., Mancini, M., Irmer, M., and Weber, R., "Investigation of Ash Deposit Formation during Co-firing of Coal with Sewage Sludge, Saw-dust and Refuse Derived Fuel," Fuel, 87, 2824-2837 (2008). https://doi.org/10.1016/j.fuel.2008.01.024
  9. Vamvuka, D., Zografos, D., and Alevizos, G., "Control Methods for Mitigating Biomass Ash-related Problems in Fluidized Beds," Bioresour. Technol., 99, 3534-3544 (2008). https://doi.org/10.1016/j.biortech.2007.07.049
  10. Cui, H., Ninomiya, Y., Masui, M., Mizukoshi, H., Sakano, T., and Kanaoka, C., "Fundamental Behaviors in Combustion of Raw Sewage Sludge," Energy & Fuels, 20, 77-83 (2006). https://doi.org/10.1021/ef050188d
  11. Gray, R. J., and Moore, G. F., "Burning the Sub-bituminous Coals of Montana and Wyoming in Large Utility Boilers," the American Society of Mechanical Engineers, 74-WA/FU-1 (1974).
  12. Lopez, C., Unterberger, S., Maier, J., and Hein, K. R. G., "Overview of Acutal Methods for Characterization of Ash Depostion," Paper No. A-38, Heat Exchanger Fouling and Cleaning: Fundamentals and Application, Santa Fe, New Mexico, (May. 2003).
  13. Teixeira, P., Lopes, H., Gulyurtlu, I., Lapa, N., and Abelha, P., "Evaluation of Slagging and Fouling Tendency during Biomass Co-firing with Coal in a Fluidized Bed," Biomass and Bioenergy, 39, 192-203 (2012). https://doi.org/10.1016/j.biombioe.2012.01.010
  14. Vamvuka, D., Pitharoulis, M., Alevizos, G., Repouskou, E., and Pentari, D., "Ash Effects during Combustion of Lignite/Biomass Blends in Fluidized Bed," Renew. Energy, 34, 2662-2671 (2009). https://doi.org/10.1016/j.renene.2009.05.005
  15. Lee, Y., Kim, J., Kim, D., and Lee, Y., "Experimental Study of Co-firing and Emission Characteristics Fueled by Sewage Sludge and Wood Pellet in Bubbling Fluidized Bed," Clean Technol., 23(1), 80-89 (2017). https://doi.org/10.7464/ksct.2017.23.1.080
  16. Grace, J. R., "Fluidized-Bed Hydrodynamics," In Handbook of Multiphase System, Ed. Hetsroni, G. Hemisphere, Washington, 8, 5-64 (1982).
  17. Clean Air Technology Center, "Nitrogen Oxides (NOx), Why and How They Are Controlled," Office of Air Quality Planning and Standards, U.S. Environmental Protecction Agency, Report No.EPA-456/F-99-006R (1999).
  18. Kambara, S., Takarada, T., Yamamoto, Y., and Kato, K., "Relation between Functional Forms of Coal Nitrogen and Formation of $NO_x$ Precursors during Rapid Pyrolysis," Energy & Fuels, 7, 1013-1020 (1993). https://doi.org/10.1021/ef00042a045
  19. Solomon, P. R., and Colket, M. B., "Evolution of Fuel Nitrogen in Coal Devolatilization," Fuel, 57(12), 749-755 (1978). https://doi.org/10.1016/0016-2361(78)90133-3
  20. Pohl, J. H., and Sarofim, A. F., "Devolatilization and Oxidation of Coal Nitrogen," Symposium on Combust., 16(1), 491-501 (1977). https://doi.org/10.1016/S0082-0784(77)80346-9
  21. Baxter, L. L., Mitchell, R. E., Fletcher, T. H., and Hurt, R. H., "Nitrogen Release during Coal Combustion," Energy & Fuels, 10, 188-196 (1996) https://doi.org/10.1021/ef9500797
  22. Glarborg, P., Jensen, A. D., and Johnsson, J. E., "Fuel Nitrogen Conversion in Solid Fuel Fired Systems," Prog. Energy and Combust. Sci., 29, 89-113 (2003). https://doi.org/10.1016/S0360-1285(02)00031-X