• 제목/요약/키워드: Thermoelectric Material

검색결과 188건 처리시간 0.023초

열전냉각소자와 열전발전소자의 발전특성 (Characteristics of electric power for thermoelectric cooling & generating module)

  • 우병철;이희웅;이동윤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.448-451
    • /
    • 2000
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulating the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. We can design the thermoelectric modules having the good properties of thermoelectric generation. Resistivity of thermoelectric module for thermoelectric generation consisting of 62 cells was 0.15-0.4$\Omega$ Developed thermoelectric modules can be expected th have better properties than thermoelectric cooling modules above $70^{\circ}C$ in temperature difference between hot and cold ends.

  • PDF

MOCVD를 이용한 $BiSbTe_3$ 박막성장 및 열전소자 제작

  • 권성도;윤석진;주병권;김진상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.425-425
    • /
    • 2008
  • Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3mW is obtained at the temperature difference of 45K. We provide a promising approach for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which can employ nanostructures for high thermoelectric properties.

  • PDF

복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구 (Experimental fabrication and analysis of thermoelectric devices)

  • 성만영;송대식;배원일
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Organic-Inorganic Hybrid Thermoelectric Material Synthesis and Properties

  • Kim, Jiwon;Lim, Jae-Hong
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.272-277
    • /
    • 2017
  • Organic-inorganic hybrid thermoelectric materials have obtained increasing attention because it opens the possibility of enhancing thermoelectric performance by utilizing the low thermal conductivity of organic thermoelectric materials and the high Seebeck coefficient of inorganic thermoelectric materials. Moreover, the organic-inorganic hybrid thermoelectric materials possess numerous advantages, including functional aspects such as flexibility or transparency, low cost raw materials, and simplified fabrication processes, thus, allowing for a wide range of potential applications. In this study, the types and synthesis methods of organic-inorganic thermoelectric hybrid materials were discussed along with the methods used to enhance their thermoelectric properties. As a key factor to maximize the thermoelectric performances of hybrid thermoelectric materials, the nanoengineering to control the nanostructure of the inorganic materials as well as the modification of the organic material structure and doping level are considered, respectively. Meanwhile, the interface between the inorganic and organic phase is also important to develop the hybrid thermoelectric module with excellent reliability and high thermoelectric efficiency in addition to its performance in various electronic devices.

알루미나 나노 Particle의 분산 평가 및 최적화

  • 박국효;신효순;여동훈;홍연우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.251-251
    • /
    • 2009
  • The generation of energy and the cooling of system using thermoelectric semiconductor material have been in spotlight. Thermoelectric effect increases with the decrease of the thermal conductivity. In the thermoelectric devices, thermal conductivity is related to phonon scattering. Therefore, few studies have been conducted in the thermoelectric materials dispersed nano oxide particle for increasing the phonon scattering. However, core-shell structure which nano particle disperses in solvents and then which thermoelectric materials coated on the nano oxide particles has not been reported. In this study, we selected commercial nano powder such as $Al_2O_3$. This nano particle was about 20nm and was crushed aggregate by mechanical treatment. We have developed the effect of the dispersant and the solvent. The properties of particles were evaluated by SEM, TEM, particle size analysis, and BET. Dispersion and dispersion stability were evaluated by electronic microscope and turbidity.

  • PDF

결함제어를 통한 열전 반도체 연구 동향 (Defect Engineering for High-Performance Thermoelectric Semiconductors)

  • 민유호
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.419-430
    • /
    • 2022
  • Defects in solids play a vital role on thermoelectric properties through the direct impacts of electronic band structure and electron/phonon transports, which can improve the electronic and thermal properties of a given thermoelectric semiconductor. Defects in semiconductors can be divided into four different types depending on their geometric dimensions, and thus understanding the effects on thermoelectric properties of each type is of a vital importance. This paper reviews the recent advances in the various thermoelectric semiconductors through defect engineering focusing on the charge carrier and phonon behaviors. First, we clarify and summarize each type of defects in thermoelectric semiconductors. Then, we review the recent achievements in thermoelectric properties by applying defect engineering when introducing defects into semiconductor lattices. This paper ends with a brief discussion on the challenges and future directions of defect engineering in the thermoelectric field.

MOCVD 법에 의한 Bi-Te계 열전소재 제조 및 박막형 열전소자 제작 (Growth of Bi-Te Based Materials by MOCVD and Fabrication of Thermoelectric Thin Film Devices)

  • 권성도;주병권;윤석진;김진상
    • 한국전기전자재료학회논문지
    • /
    • 제21권12호
    • /
    • pp.1135-1140
    • /
    • 2008
  • Bismuth-telluride based thin film materials are grown by Metal Organic Chemical Vapor Deposition(MOCVD). A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the sample was heated by heating block and the voltage output measured. As expected for a thermoelectric generator, the voltage decreases linearly, while the power output rises to a maximum. The highest estimated power of $1.3{\mu}W$ is obtained for the temperature difference of 45 K. we provide a promising procedure for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which may have nanostructure with high thermoelectric properties.

열전반도체를 이용한 냉장고의 개발 (The Development of Refrigerator Using the Thermoelectric semiconductor)

  • 정용호;이우선;서용진;김상용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 반도체재료
    • /
    • pp.50-53
    • /
    • 2001
  • The thermoelectric refrigeration technologies have no moving parts. compressor, or piping required. In this study, the basic capacity of thermoelectric devices and development on some thermoelectric refrigerator were reviewed and basic technical concepts related with many kinds of thermoelectric materials were discussed. Especially the result of performance test on thermoelectric refrigerator whose minimum temperature of $-2^{\circ}C$ was introduced briefly.

  • PDF

고효율 열전소재 2%Na-PbTe 의 소자화에 관한 연구 (Study on Metalizing 2% Na-PbTe for Thermoelectric Device)

  • 김훈;강찬영;황준필;김우철
    • 정보저장시스템학회논문집
    • /
    • 제10권2호
    • /
    • pp.32-38
    • /
    • 2014
  • Heat emission from the laser diode used in the optical disc drive and the defects from the increased temperature at the system have attracted attentions from the field of the information storage device. Thermoelectric refrigerator is one of the fine solutions to solve these thermal problems. The refrigeration performance of thermoelectric device is dependent on the thermoelectric material's figure-of-merit. Meanwhile, high electrical contact resistivity between metal electrode and p- and n-type thermoelectric materials in the device would lead increased total electrical resistance resulting in the degeneracy in performance. This paper represents the manufacturing process of the PbTe-based material which has one of the highest figure-of-merit at medium-high-temperature, ~ 600K to 900 K, and the nickel contact layer for reduced electrical contact resistance at once, and the results showing the decent contact structure and figure-of-merit even after the long-term operation environment.

MOCVD를 이용한 BiSbTe3 박막성장 및 열전소자 제작 (Properties of BiSbTe3 Thin Film Prepared by MOCVD and Fabrication of Thermoelectric Devices)

  • 권성도;윤석진;주병권;김진상
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.443-447
    • /
    • 2009
  • Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_{2}Te_{3}$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $5{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_{2}Te_{3}$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_{2}Te_{3}$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3 ${\mu}m$ is obtained at the temperature difference of 45 K.