• 제목/요약/키워드: Thermoelastic stress

검색결과 139건 처리시간 0.022초

마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석 (Thermoelastic Finite Element Analysis of Double horizontal Subsurface Cracks Due to Sliding Surface Traction)

  • 이진영;김석삼;채영훈
    • Tribology and Lubricants
    • /
    • 제18권3호
    • /
    • pp.219-227
    • /
    • 2002
  • A linear elastic fracture mechanics analysis of double subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석 (Thermoelastic Finite Element Analysis of Multiple horizontal Subsurface Cracks Due to Sliding Surface Traction)

  • 이진영;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.50-58
    • /
    • 2000
  • A linear elastic fracture mechanics analysis of multiful subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was peformed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

  • PDF

사출 성형품의 금형내 잔류음력과 이형후 냉각에 의한 후변형 해석 (Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Subsequent Cooling after Ejection)

  • 양상식;권태헌
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.340-348
    • /
    • 2002
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of thermo-rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint have been done. Free volume theory has been used to represent the non-equilibrium density state during the fast cooling. At ejection, instantaneous deformation takes place due to the redistribution of in-mold residual stress. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of out-of-mold deformation. In this study, emphasis is also made on the treatment with regard to lateral constraint types during molding process. Two typical mold geometries are used to test the numerical simulation modeling developed in this study.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

냉간단조에서 금형 열박음 영향의 정량적 분석 (Quantitative Analysis of Effect of Shrink Fit in Cold Forging)

  • 이추실;김민철;정동찬;손요헌;전만수
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.301-307
    • /
    • 2011
  • In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, magnitude of shrink fit, dimension of shrink ring, number of shrink rings, partition of die insert and clamping force on effective stress and circumferential stress are analyzed. It has shown that the number of shrink rings, magnitude of shrink fit, and Young's modulus of die insert material have strong influence on compressive circumferential stress in die insert but that the influence of the other design parameters is relatively weak.

Lock-In Thermography를 이용한 노치시험편의 응력해석 및 피로한계치 평가 (Stress Analysis and Fatigue limit Evaluation of Plate with Notch by Lock-In Thermography)

  • 김원태;강기수;최만용;박정학;허용학
    • 비파괴검사학회지
    • /
    • 제26권5호
    • /
    • pp.315-320
    • /
    • 2006
  • 비접촉 비파괴 응력해석기술인 위상잠금 적외선 열화상기술 (Lock-in infrared Thermography)를 이용하여 V-노치와 원형노치를 갖는 평판의 응력분포해석과 피로한계치를 예측하였다. 반복하중을 받는 시험편의 표면온도 분포를 2차원 열화상으로 측정하고 열탄성효과에 의해 노치 선단에서 응력분포를 예측하였으며 재료의 비가역적 히스테리시스에 의해 발생하는 내재 분산에너지를 측정하여 노치시험편의 피로한계치를 예측하였다. 피로한계응력 이내에서 응력측정 결과는 10% 이내의 정확도를 보였으며, 원형노치와 V-노치 시험편의 피로한계치를 164 MPa과 185 MPa로 예측하였다.

급속 열처리시 실리콘 웨이퍼의 온도분포와 슬립 현상의 해석 (Analysis of Temperature Distribution and slip in Rapid Thermal Processing)

  • 이혁;유영돈;엄윤용;신현동;김충기
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.609-620
    • /
    • 1992
  • 본 연구에서는 텅스텐 할로겐 램프를 이용한 급속 열처리 장치로 웨이퍼를 가 열할 때 시간에 따라 변하는 웨이퍼의 2차원 온도 분포와 온도 구배에 의해 발생하는 열응력을 실리콘 웨이퍼의 결정방향에 따라 다른 값을 갖는 탄성계수를 고려하여 계산 하고, 슬립의 발생 시기, 웨이퍼의 가열속도와 슬립량의 관계, 그리고 웨이퍼에 발생 한 슬립의 진전 특성에 대하여 살펴보고 실험결과와 비교하였다.

디스크 브레이크와 패드의 접촉을 고려한 벤틸레이티드 디스크 브레이크의 열적거동에 관한 연구 (Thermal Behavior of Ventilated Disc Brakes Considering Contact Between Disc and Pad)

  • 마정범;이봉구
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.259-265
    • /
    • 2014
  • When the brakes of a vehicle are applied, large amounts of heat are generated on the surfaces of the brake discs owing to friction between the discs and the brake pads. A high temperature gradient on the disc surfaces leads to thermal deformation and severe disc abrasion. Ultimately, the thermal deformation and disc wear give rise to a thermal judder phenomenon, which has a major effect on the stability of the vehicle. To investigate and propose a solution to these problems, thermoelastic instabilities under applied thermal and mechanical loads were analyzed using the commercial finite element package ANSYS by considering the contact surfaces between the discs and pads. Direct-contact three-dimensional finite elements between the discs and pads were applied to investigate the disc friction temperature, thermal deformation, and contact stress so that the thermal judder phenomenon on the surface of the disc could be predicted.

가압경수로용 환형 핵연료의 간극 크기 다중목적 근사최적설계 (Approximate Multi-Objective Optimization of Gap Size of PWR Annular Nuclear Fuels)

  • 도재혁;권영두;이종수
    • 한국정밀공학회지
    • /
    • 제32권9호
    • /
    • pp.815-824
    • /
    • 2015
  • In this study, we conducted the approximate multi-objective optimization of gap sizes of pressurized-water reactor (PWR) annular fuels. To determine the contacting tendency of the inner-outer gaps between the annular fuel pellets and cladding, thermoelastic-plastic-creep (TEPC)analysis of PWR annular fuels was performed, using in-house FE code. For the efficient heat transfer at certain levels of stress, we investigated the tensile, compressive hoop stress and temperature, and optimized the gap sizes using the non-dominant sorting genetic algorithm (NSGA-II). For this, response surface models of objective and constraint functions were generated, using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by NSGA-II were verified through the TEPC analysis, and we compared the obtained optimum solutions and generated errors from the CCD and D-optimal design. We observed that optimum solutions differ, according to design of experiments (DOE) method.

전산용접역학의 최근 동향 (Recent Development in Computational Welding Mechanics)

  • 임세영;한유성;이계형;한명수;최강혁
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.87-91
    • /
    • 2009
  • Welding is one of the most important joining processes and the effect of welding residual stresses in the structure has a great deal of influence on its quality. In this paper, recent development in computational welding mechanics, particularly calculation of welding residual stresses, is introduced. The hypoelastic formulation of finite element analysis for thermoelastic-plastic deformation is applied to welding processes to find residual deformations and stresses. Leblond's phase evolution equation coupled with the energy equation is employed to calculate the phase volume fraction; this plays an important role as a kinetics parameter affecting phase fraction effects in the mechanical constitutive equation of welded materials. Furthermore, transformation plasticity is taken into account for an accurate evaluation of stress. The influence of the phase transformation and the transformation plasticity on residual stress is investigated by means of numerical analyses using metallurgical parameters in Leblond's phase evolution equation that are adjusted with respect to various cooling rates in a CCT-diagram. Coding implementation is conducted by way of the ABAQUS user subroutines, UMAT.

  • PDF