• Title/Summary/Keyword: Thermodynamic quantities

Search Result 23, Processing Time 0.025 seconds

A New Method on the Derivation of the Thermodynamic Quantities for a System Represented by the Canonical Ensemble (Canonical Ensemble 로 代表된 系의 에너지 分布則 및 熱力學的牀態量의 道出에關하여)

  • Kim Shoon-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.3-8
    • /
    • 1954
  • Fowler obtained thermodynamic quantities assuming the theory which could be derived by representing the system with microcanonical ensemble, in order to introduce the temperature T of the system proper, he considered the combined systems which are composed of the system proper and another arbitrary system that is in thermal contact with the former, and represented the combined system by a microcanonical ensemble, here, he used the steepest descent method in his calculation. This Fowler's treatment is not only unsatisfactory at the point of theoretical view but also he could not make the formulation of free energy of Helmholtz's so that this formular was forced to be assumed. From the point of Quantum Statistical Mechanical view, the materially closed system which is in an equilibrium state with the temperature T is best represented by canonical ensemble. At the actual derivation of the distribution law and thermodynamic quantities, however, in order to avoid the difficulty of calculation Tolman proceeded his calculation either representing the system proper by the grand-canonical ensemble or adding a certain limitation.

  • PDF

Thermodynamic Approach on The Critical Micelle Concentration of Surfactant (계면활성제의 임계 미셀농도에 대한 열역학적 접근)

  • Kim, Se-Bong;Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.449-454
    • /
    • 2011
  • This surfactant can be used as a cosmetics and chemical dispersants. The variation of critical micelle concentration(CMC) with temperature for N-eicosyl pyridinium bromide over the range $40^{\circ}C$ to $60^{\circ}C$ has been measured by drop methods. Thermodynamic quantities for micellization of N-eicosyl pyridinium bromide in water have been calculated by polynominal equation.

Thermodynamic Parameters for Micelle Formation of Dodecylpyridinium Chloride (Dodecylpyridinium Chloride의 micelle 形成의 熱力學變數)

  • Han, Man-Un
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.103-108
    • /
    • 1966
  • The effect of temperature on the critical micelle concentration of dodecylpyridinium chloride has been determined by electrical conductance method over the range from $5^{\circ}C\;to\;50^{\circ}C$. The values of the change in heat content, ${\Delta}H_m$, and the other thermodynamic parameters have been estimated using the equation of temperature dependence on the critical micelle concentration for the same temperature range. The significance of these thermodynamic quantities and their relations to the various current theories of micelle forming processes were discussed.

  • PDF

The Effect of Temperature on the Critical Micelle Concentration of Hexadecyl Pyridinium Bromide (Hexadecyl Pyridinium Bromide의 임계미셀농도에서 온도의 효과)

  • Kim, Yeoung-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.51-54
    • /
    • 2007
  • Surfactants can be used as a cosmetics and chemical dispersants. The variation of critical micelle concentration(CMC) with temperature for hexadecyl pyridinium bromide over the range $40^{\circ}C$ to $60^{\circ}C$ has been measured by drop methods. Thermodynamic quantities for micellization of hexadecyl pyridinium bromide in water have been calculated by polynominal equation.

  • PDF

The Effect of Temperature on the Critical Micelle Concentration of Cationic Surfactant for Chemical Dispersants (유처리제용 양이온 계면찰성제의 임계미셀농토에서 온도의 효과)

  • kim, Yeoung-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.145-148
    • /
    • 2008
  • Cationic surfactant can be used as cosmetics and chemical dispersants. The variation of critical micelle concentration (CMC) with temperature over the range $40^{\circ}C$ to $60^{\circ}C$ for N-octadecyl pyridinium bromide was measured by drop methods. Thermodynamic quantities such as free energy, enthalpy, entropy and heat capacity for micellization of N-octadecyl pyridinium bromide in water were calculated by fourth-degree polynominal equation In the result, free energy change was decreased generally by the increment of temperature.

  • PDF

Thermodynamic Properties of the Polymer Solutions

  • Lee, Woong-Ki;Pak, Hyung- Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.337-343
    • /
    • 1985
  • A statistical mechanical approach to elucidate the solvent effects on the high polymer solutions has been carried out on the basis of the simple model of liquids improved by Pak. In our works, the partition function of the polymer solutions is formulated by the lattice model and our simple treatment of liquid structures. For the ideal polymer solutions proposed by Flory, thermodynamic functions of the polymer solutions are obtained and equations of mixing properties and partial molar quantities are derived from the presented partition function of the polymer solutions. Partial molar quantities are calculated for the rubber solutions in carbon disulfide, benzene and carbon tetrachloride. Comparisons have been made between our equations and those of Flory's original paper for partial molar properties of the rubber-benzene system. Comparing the experimental data of the osmotic pressure of polystyrene-cyclohexane system with our calculated values and those of Flory's, our values fit to the agreeable degrees better than those of Flory's.

Oxygen diffusion on W(110) : Comparison of experiment and theory (W(110)면에서의 산소의 확산 : 실험과 이론의 비교)

  • 남창우;홍진표;김채옥
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.181-186
    • /
    • 1999
  • The diffusion of oxygen atoms on tungsten (110) surface is studied by comparison of experiment results and recent calculations. It has been suggested that the thermodynamic factor which is inversely proportional to be compressibility has strong temperature dependence which may cause non-Arrhenius behavior of diffusion coefficient. Recent experiments, however, indicate effectively no temperature dependence of this factor and support the view that non-Arrhenius behavior originates from the dynamic factor rather than the thermodynamic factor. Discrepancies in coverage dependence of physical quantities between theory and experiment are discussed.

  • PDF

Studies on the Maximum Transfer Rate of Printing Ink (인쇄 잉크의 최대 전이율에 관한 연구)

  • 강상훈
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • Polymeric mesogens having a regularly alternating rigid-flexible repeating structure in the main-chain polymer exhibit distinct even-odd oscillation in their thermodynamic quantities with respect to the number of methylene units in the spacer. The even-odd oscillation depends on the number of methylene groups in the spacer the entropy change at the NI(nematic-isotropic) phase transition becomes less distinct when the linking group is replaced by the carbonate. In our previous work, we have suggested that the characteristics arise from the geometrical arrangement of the linkage. In this work, we have prepared a series of carbonate-type monomer and dimer liquid crystals. The thermodynamic behaviors at the NI phase transition have been compared with those previous reported for the ether- or ester-type liquid crystals. For the dimer series, the orientational order parameter of the mesogenic core was determined by using H-NMR technique. The origin of the difference observed among linking groups was found to the geometrical characteristics of chemical structure.

  • PDF

Substitutional Adsorption and Thermodynamic Characteristics of Proton and Di-iso-butylnitrosoamine in NaCl Aqueous Solution (NaCl 수용액내의 양성자와 디이소부틸니트로소아민의 치환흡착과 열역학적 특성)

  • HWANG Kum-Sho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.239-245
    • /
    • 1983
  • Electrochemical adsorption always was accompanied with solvent displacement and relative size factor(x) of adsorbate and solvent and hydrogen coverage(${\theta}$) on the lead anodic film electrode formed in phosphoric acid in NaCl solution and the sea water at $15{\sim}35^{\circ}C$ were studied by means of constant current-potential method and potentiodynamic cathodic polarization method. In this experiment, various constants and thermodynamic quantities calculated from the hydrogen coverage were also described to explain the reactivities of di-iso-butylnitrosoamine(DBNA) and proton ($H^+$) according to the changes of interactions between solute and solvent in the bulk phase and interphase. It was investigated that the average values of relative size factor and the coverage of hydrogen atoms studied with the electrode of lead anodic film formed in phosphoric acid solution in 60mM DBNA+0.5M NaCl and in 60mM DBNA+$6\%0$ sea water were about 11.0 and 0.2 respectively. Hydrogen evolution was electrochemical mechanism because of substitutional adsorption of aromatic substance with their delocalization of electrons, but in the case of non-charge transfer adsorption of aliphatic substance(DBNA) interacting relatively little with the electrode, it was combination mechanism.

  • PDF

Evaluations of the Equations of State and Thermodynamic Quantities of Fluid Metal at High Temperatures and Densities

  • Shin, Hyun-Joon;Hong, Jong-Ha;Oh, Byung-Wan
    • Nuclear Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.127-136
    • /
    • 1978
  • We have applied the temperature dependent Thomas-Fermi theory to evaluate the equations of state, chemical potentials, entropies, % ionizations, total energies and kinetic energies of an atom, and seveal thermodynamic quantifies of one of metallic substance, Na, for a density range of 0.1$\rho$$_{0}$ ~ 10$\rho$$_{0}$, where $\rho$$_{0}$ is the normal density of Na at its melting point, and for a temperature range of 60.88Ryd. ~0.0216 Ryd., where the system is expected to be in a gaseous or liquid state. The main interest of present work lies in physical quantities at high temperatures and high densities, however, we have included those quantities of Na at sufficiently low temperatures and low densities to show that the approximation is not so crude as one might expect. Particularly, at high temperatures, the calculated equations of state, kinetic energies of an atom, chemical potentials and entropies are compared with those, of an ideal Fermi gas. The results show that, at high temperatures, the agreement seems good for chemical Potentials. However, the differences in, entropy, kinetic energy of an atom, and equation of state are not negligible even at such high temperature as $textsc{k}$T=60.88Ryd.

  • PDF