• 제목/요약/키워드: Thermodynamic Method

검색결과 436건 처리시간 0.03초

동역학 해석용 Air Spring Modeling 방법에 대한 고찰 (Study on air spring modeling method for railway vehicle dynamics)

  • 성재호;이강운;박길배;양희주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2236-2241
    • /
    • 2008
  • To predict the dynamic behaviour of railway vehicle, the complex vehicle structure has been described by mathmatical model such as mass, spring and damper. Air-spring has played a major role to improve dynamic characteristics, vibration isolation and ride comfort. The mechanical behaviour of air spring is very complicated. The behaviour is based on fluid and thermodynamic mechanisms. The main parameters of air spring are stiffness due to compression of the air in the spring and surge reservoir, change of area stiffness and orifice damping. In this paper, we have studied an air-spring modeling method and compared the difference between calculation and test.

  • PDF

Preparative Chromatographic Separaction: Simulated Moving Bed and Modified Chromatography Methods

  • Yi Xie;Koo, Yoon-Mo;Nien-Hwa Linda Wang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권6호
    • /
    • pp.363-375
    • /
    • 2001
  • Chromatography has been method of choice for the separation complex biologi-cal mixtures fro analytical purpose, particularly for the last fifty years. Its use has recently been extended to preparative separation where the productivity relative to the amount of resin and sol-vent used is a matter of concern. To overcome the inherent thermodynamic inefficiency of batch chromatography, as exemplified by the partial temporal usage of the resin and dilution of the product with the solvent, chromatography has been continually modified by separation engineers. Column switching and recycling represnet some of the process modifications that have brought high productivity to chromatography. Recently, the simulated moving bed (SMB) method, which claims a high separation efficiency based on counter-current moving bed chromatography. has be-come the mainstay of preparative separation, especially in chiral separation. Accordingly, this pa-per reviews the current status of SMB along with several chromatographic modification, which may be helpful in routine laboratory and industrial chromatographic practices.

  • PDF

화학수송법으로 성장한 $Cd_{4}GeSe_{6}$$Cd_{4}GeSe_{6}:Co$ 단결정에서 Energy Gap의 온도의존성 및 열역학함수 추정 (Temperature Dependence of Energy Gap and Thermodynamic Function Properties of Undoped and Co-doped $Cd_{4}GeSe_{6}$ Single Crystals by Chemical Transport Reaction Method)

  • 김덕태;김남오;최영일;김병철;김형곤;현승철;김병인;송찬일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.31-36
    • /
    • 2002
  • In this work $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}:Co^{2+}$ single crystals were grown by the chemical transport reaction method and the structure of $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}:Co$ single crystals were monoclinic structure. The temperature dependence of optical energy gap was fitted well to Varshni equation. Also, the entropy, enthalpy and heat capacity were deduced from the temperature dependence of optical energy gap.

  • PDF

알루미늄 에칭폐액으로부터 침전법에 의한 순수 알루미나분말의 회수 (Recovery of Pure Alumina Powder from the Wasted Aluminum Etching Solution by Precipitation Method)

  • 김기호;강병철
    • 한국표면공학회지
    • /
    • 제25권3호
    • /
    • pp.150-157
    • /
    • 1992
  • A recovery process of pure alumina powder from the wasted aluminum etching solution of electrolytic condenser works was studied. The possibility of this process was considered in the basis of thermodynamic data nad physico-chemical properties for the recovered materials were tested. In order to obtain pure alumina, Fe3+ and Cu2+ in the solution as impurities were solvent-extracted, respectively, and then, Al3+ was precipitated by changing the pH of the solution. As the results, more than 99.9% of Al3+ in the solution was recovered by the precipitation method. The weight of the precipitate was reduced to about 65 wt.% of the original one by calcination and the sizes of the recovered powders were in order of 3-5$\mu\textrm{m}$. The precipitates were transformed to $\alpha$-Al2O3 at the calcination temperature about 120$0^{\circ}C$.

  • PDF

Hydrogen Bonding between Thioacetamide and Some N,N-dimethylalkylamides in Chloroform

  • Park, Hee-Suk;Choi, Jae-Young;Kim, Yong-Ae;Huh, Young-Duk;Yoon, Chang-Ju;Choi, Young-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권5호
    • /
    • pp.367-371
    • /
    • 1990
  • The near-IR spectra of thioacetamide were recorded for the investigation of hydrogen bonding between thioacetamide (TA) and N,N-dimethylalkylamides (DMF, DMA, DMP) in chloroform over the range of 5$^{\circ}C$ to 55$^{\circ}C$. The ${\nu}_{\alpha}$ + amide II combination band has been resolved into contributions from monomeric TA, 1:1 hydrogen bonded complex and 1:2 complex by the parameterized matrix modeling method. The association constants ($K_c$) of the complex have been obtained at various temperatures and used to determine the thermodynamic parameters for the hydrogen bonding by the usual Van't Hoff method. It was found that N,N-dimethylalkylamide forms less stable hydrogen bonded complex with TA in chloroform than in carbon tetrachloride.

Characterization of Spinel Lithium Manganite Prepared by Citrate Sol-Gel Method

  • 홍영식;박휴범;이지은;한치환;김시중
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권11호
    • /
    • pp.1153-1158
    • /
    • 1997
  • The powder characteristics of LiMn2O4 prepared by the citrate sol-gel method have been investigated. The optimum pH for the preparation of homogeneous citrate gel was calculated by the theoretical consideration of thermodynamic equilibrium constants for metal-citrate complexes and metal salts. The obtained citrate gel was prefired at 300 ℃ and calcined at 300-700 ℃ for 1 h. The obtained powders were characterized by TG/DSC, FT-IR spectrometer, X-ray diffractometer, SQUID magnetometer, SEM, and particle size analyzer. It was observed that the mixed phases of spinel LiMn2O4 and Mn3O4 were transformed into spinel LiMn2O4 phase and the vibrational bands due to the carbonate and nitrate were also disappeared over 400 ℃. At temperatures below 150 K, inverse molar susceptibilities of every sample began to show an antiferromagnetic ordering of Mn magnetic moments.

Analysis of Core Disruptive Accident Energetics for Liquid Metal Reactor

  • Suk, Soo-Dong;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.117-131
    • /
    • 2002
  • Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of the work to demonstrate the inherent and ultimate safety of conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 MWe pool- type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method and associated computer program, SCHAMBETA, was developed using a modified Bethe-Tait method to simulate the kinetics and thermodynamic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of the energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the SCHAMBETA code for various reactivity insertion rates up to 100 S/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies were also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters.

Principles and Applications of Galvanostatic Intermittent Titration Technique for Lithium-ion Batteries

  • Kim, Jaeyoung;Park, Sangbin;Hwang, Sunhyun;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.19-31
    • /
    • 2022
  • Lithium-ion battery development is one of the most active contemporary research areas, gaining more attention in recent times, following the increasing importance of energy storage technology. The galvanostatic intermittent titration technique (GITT) has become a crucial method among various electrochemical analyses for battery research. During one titration step in GITT, which consists of a constant current pulse followed by a relaxation period, transient and steady-state voltage changes were measured. It draws both thermodynamic and kinetic parameters. The diffusion coefficients of the lithium ion, open-circuit voltages, and overpotentials at various states of charge can be deduced by a series of titration steps. This mini-review details the theoretical and practical aspects of GITT analysis, from the measurement method to the derivation of the diffusivity equation for research cases according to the specific experimental purpose. This will shed light on a better understanding of electrochemical reactions and provide insight into the methods for improving lithium-ion battery performance.

Ultrasonic cavitation bubble- and gas bubble-assisted fractional precipitation for the purification of (+)-dihydromyricetin

  • Jieun Hong;Jin-Hyun Kim
    • Korean Journal of Chemical Engineering
    • /
    • 제39권
    • /
    • pp.3067-3073
    • /
    • 2022
  • This study presents the ultrasonic cavitation bubble- and gas bubble-assisted fractional precipitation that dramatically improves the precipitation efficiency in existing precipitation method for purifying (+)-dihydromyricetin. Compared to the conventional method, the time required for precipitation was reduced by 40 times. The particle size was reduced by 4.0-7.4 times and 3.7-4.4 times for cavitation bubbles and gas bubbles, respectively, and the diffusion coefficient was increased by 5.1-9.2 times (cavitation bubble) and 3.7-4.4 times (gas bubble). Meanwhile, the precipitation rate constant was increased by 11.0-65.0 times and 17.0-24.6 times and the activation energy was decreased by -5,543~-9,655 J/mol and -6,546~-7,404 J/mol, which resulted in an improved precipitation rate. The results of the thermodynamic analysis showed that the precipitation was exothermic and non-spontaneous.

압축성 기-액 이상매체중의 고속 유동현상 (HIGH-SPEED FLOW PHENOMENA IN COMPRESSIBLE GAS-LIQUID TWO-PHASE MEDIA)

  • 신병록
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.249-257
    • /
    • 2007
  • A high resolution numerical method aimed at solving gas-liquid two-phase flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

  • PDF