• Title/Summary/Keyword: ThermoJet

Search Result 19, Processing Time 0.03 seconds

Rapid Tooling Technology for Producing Functional Prototypes using Ceramic Shell Investment Casting and Patterns Produced Directly from ThermoJet 3D Printer (ThermoJet 3D 프린터로 직접 제작한 패턴과 세라믹쉘 주조법을 이용한 기능성 시제품의 쾌속제작)

  • Kim Ho-Chan;Lee Seok;Lee Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.203-210
    • /
    • 2006
  • This paper focuses on the development of RT technology suitable for manufacturing a small quantity of metal prototype of a precise part from an RP master. Dimensional accuracy and surface roughness are evaluated from Thermojet part of a 3D printer, and effective post-processing method is introduced. Investment casting is done using a prototype built from 3D printer as a wax pattern. Ceramic shell investment casting technique is developed to build a prototype with materials mostly wanted. Also, experimental result shows this research is very useful in manufacturing of a small quantity of functional part or a test part of a specific material.

Air horizontal jets into quiescent water

  • Weichao Li ;Zhaoming Meng;Jianchuang Sun;Weihua Cai ;Yandong Hou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2011-2017
    • /
    • 2023
  • Gas submerged jet is an outstanding thermohydraulic phenomenon in pool scrubbing of fission products during a severe nuclear accident. Experiments were performed on the hydraulic characteristics in the ranges of air mass flux 0.1-1400 kg/m2s and nozzle diameter 10-80 mm. The results showed that the dependence of inlet pressure on the mass flux follows a power law in subsonic jets and a linear law in sonic jets. The effect of nozzle submerged depth was negligible. The isolated bubbling regime, continuous bubbling regime, transition regime, and jetting regime were observed in turn, as the mass flux increased. In the bubbling regime and jetting regime, the air volume fraction distribution was approximately symmetric in space. Themelis model could capture the jet trajectory well. In the transition regime, the air volume fraction distribution loses symmetry due to the bifurcated secondary plume. The Li correlation and Themelis model showed sufficient accuracy for the prediction of jet penetration length.

Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet (평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석)

  • Ahn, Dae-Hwan;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.

Flame Formation of Ultrasonically-atomized Liquid-fuel Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통해 분사되는 초음파 무화 액체연료 화염의 형성)

  • Kim, Min Sung;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • An experimental study was performed for the combustion-field visualization of the burner which burns the liquid hydrocarbon fuel atomized by an ultrasonic oscillator. Configurations of the flame and temperature gradient were caught by both high-speed camera and thermo-graphic camera, and those images were analyzed in detail through a post-processing. In addition, the fuel consumption was measured using the balance during the combustion reaction. As a result, the consumption of atomized fuel increased with the increasing flow-rate of carrier-gas, but any correlation between the air/fuel ratio and carrier-gas flow-rate was not found at the low flow-rate condition. Also, the combustion-field grew and reaction-temperature rose due to the strengthening of combustion reaction with the increasing flow-rate of carrier-gas and power consumption of ultrasonic oscillator.

Behavior of the Ultrasonically-atomized Liquid-fuel Flame Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통해 분사되는 초음파 무화 액체연료 화염의 거동)

  • Kim, Min Cheol;Kim, Min Sung;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.1-10
    • /
    • 2018
  • An experimental study was performed for the behavior of the burner flame which results from burning of the liquid hydrocarbon fuel atomized by an ultrasonic transducer. Configurations of the flame and combustion-field were caught by both high-speed camera and thermo-graphic camera, and those images were analyzed in detail through a image post-processing. As a result, the combustion-field grew and reaction-temperature rose due to the strengthening of combustion reaction with the increasing flow-rate of carrier-gas. In addition, a phenomenon of flame flickering was discussed through the comparative analysis of the variational behavior between the visible flame and IR (Infrared) flame-field. Also, the flickering frequency of the flame was confirmed through FFT (Fast Fourier Transform) analysis employing the flame area.

A Numerical Analysis of Supersonic Impinging Jet Flows on Curved Surfaces using Upwind Wavier-Stokes Method (Upwind Navier-Stokes 방법을 이용한 굴곡면에 충돌하는 초음속 제트유동의 수치 해석적 연구)

  • Seo Jeong Il;Song Dong Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.229-232
    • /
    • 2002
  • For the purpose of Thermal Protection Material design problem, a numerical analysis of axisymmetric high temperature supersonic impinging jet flows of exhaust gas from combustor on curved surfaces has been accomplished. A modifed CSCM Upwind Navier-Stokes method which is able to cure the carbuncle Phenomena has been developed to study strong shock wave structure and thermodynamic wall properties such as pressure and heat transfer rate on various curved surfaces. The results show that the maximum heat transfer rate which is the most important parameter affecting thermo-chemical surface ablation on the plate did not occur at the center of jet impingement, but rather on a circle slightly away from the center of impingement and the shear stress distribution alone the wall is similar to the wall heat transfer late distribution.

  • PDF

Development of a Model for Fluid Analysis of Water Jet Using Automatic Javan(Salted-dry Seaweeds) Dryer Machine (전자동 자반건조기 제작에 이용할 Water Jet의 유동해석 모델)

  • Kim, Ill-Soo;Park, Chang-Eun;Jeung, Young-Jae;Son, Joon-Sik;Nam, Ki-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.53-58
    • /
    • 1998
  • This paper concentrates on the development of a computational design program to determine nozzle size in water jet, combing the numerical optimization technique with the flow analysis code. To achieve the above objective, a two-dimensional model was developed for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard ${k}-\varepsilon$ model was solved employing a general thermo fluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

Heat Transfer on a Heated Flat Plate by an Impinging Round Jet Using Liquid Crystal (Liquid Crystal을 이용한 원형충돌분류의 전열특성 연구)

  • 오승묵;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1566-1574
    • /
    • 1992
  • Local heat transfer characteristics for a round air jet impinging normally on a heated flat plate were experimentally investigated. The problem parameters investigated were jet Reynolds number, Re=4000,10000, and 20000, and nozzle-to-plate spacing(L/D) of 2,6, and 10. The temperature variations on the flat uniform heat flux surface were mapped using a thermo-sensitive liquid crytal sheet. The isochromatic images corresponding to the characteristic temperature of liquid crystal were analyzed with the help of a digital image processing system. The local Nusselt number, Nu decreased rapidly in the impingement region and exhibited a similar profiles in the wall jet region independent of the nozzle-to-plate spacing L/D. In the case of large Reynolds number, heat transfer rate (Nu) was proportional to 0.5 power of the Reynolds number. For L/D=2, a secondary peak in the heat transfer rate was seen in the region of X/D=1.5~3 due to the transition from laminar to turbulent boundary layer.

Visualization of the Combustion-field in Ultrasonically-atomized Slit-jet Flame Using a Thermo-graphic Camera (열화상카메라를 이용한 초음파 무화 슬릿제트화염의 연소장 가시화)

  • Kim, Min Sung;Koo, Jaye;Kim, Heuy Dong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • An experimental study was performed for the combustion-field visualization of the burner which burns the liquid hydrocarbon fuel atomized by an ultrasonic oscillator. Configurations of the flame and combustion-field were caught by both high-speed camera and thermo-graphic camera, and those images were analyzed in detail through a post-processing. As a result, the combustion-field grew and reaction-temperature rose due to the strengthening of combustion reaction with the increasing flow-rate of carrier-gas. In addition, a phenomenon of flame flickering was discussed through the comparative analysis of the variational behaviors between the visible flame and IR (Infrared) flame-field.

Design and Analysis of Flap System with Shape Memory Alloy (형상기억합금이 적용된 플랩 시스템의 설계 및 해석)

  • ;Scott R, White;Eric Loth
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.596-599
    • /
    • 1997
  • In this study, the flow control system with shape memory alloy in jet engine inlet was suggested to adjust the shock boundary layer interact~on for supersonic flight system. It consisted of the flap with shape memory alloy, spar with steel, and fixing device with aluminum alloy. The advantages of itself are a simple configuration, a passive air circulation by using the flap deflection due to pressure difference, and no need to be required the auxiliary devices. Finite element analysis was conducted to predict the thenno-mechanical behavlor of the flap system with shape memory alloy. The user-defined subroutine UMAT was implemented with ABAQUS to accon~modate the thermo-mechanical constitutive relation of shape memory alloy.

  • PDF