• Title/Summary/Keyword: Thermo-structural Analysis

Search Result 139, Processing Time 0.024 seconds

A Study on Structural Integrity Assessment of Pipeline using Weight Function Solution (가중함수법을 적용한 파이프라인 구조건전성평가에 관한 연구)

  • Noh, Ki-Sup;Oh, Dong-Jin;Kim, Myun-Hyun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • There are many Industry Code and Standard (ICS) for Structural Integrity Assessment (SIA) on welded structure with defect. The general ICSs, such as R6, BS 7910 and API 579-1/ASME FFS-1, provide equations to determine the upper bound residual stress profiles based on collections from many literatures. However, these residual stress profiles used in the SIA cause the conservative design for welded structures. In this study, the structural integrity assessment for girth weld in pipeline has been conducted based on fracture mechanics. In addition, thermo-elastic plastic FE analysis was performed for evaluating the residual stress of girth weld in pipeline. The weight function solution is used to determine the stress intensity factor using the residual stress profile obtained by the FE analysis. This approach can account for redistribution and relaxation of residual stress as the defects grow. In order to the evaluate quantitative comparison between BS 7910 and weight function solution, structural integrity assessment determining allowable crack size on cracked pipe was performed with failure assessment diagram.

Use of homogenization theory to build a beam element with thermo-mechanical microscale properties

  • Schrefler, B.A.;Lefik, M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.613-630
    • /
    • 1996
  • The homogenization method is used to develop a beam element in space for thermo-mechanical analysis of unidirectional composites. Local stress and temperature field in the microscale are described using the function of homogenization. The global (macroscopic) behaviour of the structure is supposed to be that of a beam. Beam-type kinematical hypotheses (including independent shear rotations) are hence applied and superposed on the microdescription. A macroscopic stiffness matrix for such a beam element is then developed which contains the microscale properties of the single cell of periodicity. The presented model enables us to analyse without too much computational effort complicated composite structures such as e.g. toroidal coils of a fusion reactor. We need only a FE mesh sufficiently fine for a correct description of the local geometry of a single cell and a few of the newly developed elements for the description of the global behaviour. An unsmearing procedure gives the stress and temperature field in the different materials of a single cell.

Thermo-structural Effects of Thermal Barrier Coating on Regenerative Cooling Chamber (열차폐 코팅이 재생냉각 챔버에 미치는 열/구조적인 영향)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.421-425
    • /
    • 2009
  • A study has been performed to investigate the thermo-mechanical effects of thermal barrier coating on liquid rocket regenerative cooling chamber using finite element analysis. Two kinds of thermal barrier coatings were studied on the same loading condition: first, NiCrAlY-$ZrO_2$, coating which is currently applied to the developing combustion chamber and second, Ni-Cr coating which might be applied in the future. Analysis results showed that NiCrAlY-$ZrO_2$ coating has better decreasing effect of temperature than the Ni-Cr coating. As a results, temperature and deformation of the cooling channel in the NiCrAlY-$ZrO_2$ coating were also less than those of the Ni-Cr coating. The Ni-Cr coating has no effect on a structural stability of the outer jacket but the NiCrAlY-$ZrO_2$ coating reduced the effective stress of the outer jacket and enhanced the structural stability of the chamber.

  • PDF

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

  • Vinyas, M.;Harursampath, D.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.667-684
    • /
    • 2020
  • In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.

Structural integrity assessment procedure of PCSG unit block using homogenization method

  • Gyogeun Youn;Wanjae Jang;Youngjae Jeon;Kang-Heon Lee;Gyu Mahn Lee;Jae-Seon Lee;Seongmin Chang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1365-1381
    • /
    • 2023
  • In this paper, a procedure for evaluating the structural integrity of the PCSG (Printed Circuit Steam Generator) unit block is presented with a simplified FE (finite element) analysis technique by applying the homogenization method. The homogenization method converts an inhomogeneous elastic body into a homogeneous elastic body with same mechanical behaviour. This method is effective when the inhomogeneous elastic body has repetitive microstructures, and thus the method was applied to the sheet assembly among the PCSG unit block components. From the method, the homogenized equivalent elastic constants of the sheet assembly were derived. The validity of the determined material properties was verified by comparing the mechanical behaviour with the reference model. Thermo-mechanical analysis was then performed to evaluate the structural integrity of the PCSG unit block, and it was found that the contact region between the steam header and the sheet assembly is a critical point where large bending stress occurs due to the temperature difference.

Prediction of response of reinforced concrete frames exposed to fire

  • Balaji, Aneesha;Muhamed Luquman, K.;Nagarajanb, Praveen;Pillai, T.M. Madhavan
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.105-117
    • /
    • 2016
  • The objective of this work is to study the restraining effect in fire resistance of framed structures and to evaluate the global response of reinforced concrete frames when exposed to fire based on advanced finite element method. To study the response a single portal frame is analyzed. The effect of floor slab on this frame is studied by modeling a beam-column-slab assembly. The evolution of temperature distribution, internal stresses and deformations of the frame subjected to ISO 834 standard fire curve for both the frames are studied. The thermal and structural responses are evaluated and a comparison of results of individual members and entire structure is done. From the study it can be seen that restraining forces has significant influence on both stresses and deflection and overall response of the structure when compared to individual structural member. Among the various structural elements, columns are the critical members in fire and failure of column causes the failure of entire structure. The fire rating of various structural elements of the frame is determined by various failure criteria and is compared with IS456 2000 tabulated fire rating.

Numerical modelling of bottom-hole rock in underbalanced drilling using thermo-poroelastoplasticity model

  • Liu, Weiji;Zhou, Yunlai;Zhu, Xiaohua;Meng, Xiannan;Liu, Mei;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.537-545
    • /
    • 2019
  • Stress analysis of bottom-hole rock has to be considered with much care to further understand rock fragmentation mechanism and high penetration rate. This original study establishes a fully coupled simulation model and explores the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on the stress distribution in bottom-hole rock. The research finds that in air drilling, as the well depth increases, the more easily the bottom-hole rock is to be broken. Moreover, the mud pressure has a great effect on the bottom-hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock is. Furthermore, the maximum principal stress of the bottom-hole increases as the mud pressure, well depth and temperature difference increase. The bottom-hole rock can be divided into three main regions according to the stress state, namely a) three directions tensile area, b) two directions compression areas and c) three directions compression area, which are classified as a) easy, b) normal and c) hard, respectively, for the corresponding fragmentation degree of difficulty. The main contribution of this paper is that it presents for the first time a thorough study of the effect of related factors, including stress distribution and temperature, on the bottom-hole rock fracture rather than the well wall, using a thermo-poroelastoplasticity model.

Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

A Study on Thermo Mechanical Properties for a Airframe Structural Material by using Reliability Methods (신뢰성기법을 이용한 항공구조재의 열기계적 특성 연구)

  • Park, Sung-Ho;Park, No-Seok;Kim, Jae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.40-45
    • /
    • 2008
  • This study describes tensile test results under room and elevated temperatures for AISI 304 stainless steel which is widely used for a airframe structural material. Tensile tests were conducted according to ASTM standards. Reliability analysis was conducted by using normal probability paper to evaluate A and B basis tensile strengths applicable to airframe structural design.

  • PDF

Thermo-Mechanical Analysis of Continuous-Adjustment Thruster using Explosion Pressure (폭압을 사용하는 연속조정 추진구조체의 열-구조해석)

  • Kim, Kyung-Sik;Kwon, Young-Doo;Kwon, Soon-Bum;Gil, Hyuck-Moon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.699-705
    • /
    • 2011
  • High-maneuver missile is a projectile which demands a strong momentum at short time. To produce a necessary thrust for the flight, the gas of high temperature and pressure is generated through explosive combustion of solid propellant, and a great thrust can be obtained by expanding this high temperature and pressure gas. Although the operating time of a rocket motor is less than a few seconds, a failure of part or ablation near the throat of nozzle may take place during the expansion of high temperature and pressure gas for great thrust. In other words, for the precise control of a missile an exact stress analysis considering both, the thermal stress caused by the heat transfer between combustion gas and wall, and the mechanical stress caused by the pressure change in the flow, should be considered first. In this connection, this study investigated the safety, as a point of view of stress and melting point of the material, of the pre-designed thrust generating structure which is subjected to high temperature and pressure as a function of motor operating time.