• Title/Summary/Keyword: Thermo-mechanical properties

Search Result 389, Processing Time 0.024 seconds

Experimental studies on the fatigue life of shape memory alloy bars

  • Casciati, Sara;Marzi, Alessandro
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.73-85
    • /
    • 2010
  • The potential offered by the thermo-mechanical properties of shape memory alloys (SMA) in structural engineering applications has been the topic of many research studies during the last two decades. The main issues concern the long-term predictability of the material behaviour and the fatigue lifetime of the macro structural elements (as different from the one of wire segments). The laboratory tests reported in this paper are carried out on bar specimens and they were planned in order to pursue two objectives. First, the creep phenomenon is investigated for two different alloys, a classical Ni-Ti alloy and a Cu-based alloy. The attention is then focused on the Cu-based alloy only and its fatigue characteristics at given temperatures are investigated. Stress and thermal cycles are alternated to detect any path dependency.

Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory

  • Safa, Abdelkader;Hadji, Lazreg;Bourada, Mohamed;Zouatnia, Nafissa
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.329-336
    • /
    • 2019
  • An efficient shear deformation beam theory is developed for thermo-elastic vibration of FGM beams. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the on the surfaces of the beam without using shear correction factors. The material properties of the FGM beam are assumed to be temperature dependent, and change gradually in the thickness direction. Three cases of temperature distribution in the form of uniformity, linearity, and nonlinearity are considered through the beam thickness. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded beams are obtained using Navier solution. Numerical results are presented to investigate the effects of temperature distributions, material parameters, thermal moments and slenderness ratios on the natural frequencies. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Expert Design Evaluation System for injection Molding

  • Kim, Sang-Gook;Huh, Yong-Jeong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.62-75
    • /
    • 2001
  • The design and manufacture of injection molded polymeric parts with desired properties is a costly process dominated by empiricism including repeated modification of actual tooling. This paper presents and expert design evaluation system which can predict the mechanical performance of a molded product and diagnose the design before the actual mold is machined. The knowledge-based system synergistically combines a rule-based expert system with CAE programs. An iterative boundary pressure reflection method(IBPR) is developed to automate the cavity filling simulation program and to predict thermo-mechanical properties of a molded part precisely. Mathematical models of weldline and frozen-in molecular orientation are established to determine the spatial variation of microstructural anisotropies of a molded part from the result of cavity filling simulation. The strength ellipse is devised as and index which represents th spatial distribution of the microstructural anisotropies of a molded part, Heuristic knowledge of injection molding, flow simulation, and mechanical performance prediction is formalized as rules of an expert consultation system. The expert system interprets the analytical results of the process simulation, predicts the performance, evaluates the design and generates recommendations for optimal design alternative.

  • PDF

Characteristic of Underfill with Various Epoxy Resin (에폭시 수지에 따른 언더필의 특성에 관한 연구)

  • Noh, Bo-In;Lee, Jong-Bum;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.39-45
    • /
    • 2006
  • This study was investigated the thermal properties of underfill with various epoxy resins using thermal analysis methods such as differential scanning calorimetry (DSC), thermo gravimetry analysis (TGA), dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). And, the adhesion strength of the underfills/FR-4 substrate was evaluated. The glass transition temperature (Tg) of underfill which was composed the cycolaliphatic epoxy resin was lower than that of underfill which was not composed the cycolaliphatic epoxy resin. The thermal degradation of underfill was composed of two processes, which involved chemical reactions between the degrading polymer and oxygen from the air atmosphere. The coefficient of thermal expansion (CTE) of underfill which was composed the cycolaliphatic epoxy resin was higher than that of underfill which was not composed the cycolaliphatic epoxy resin. The excessive curing temperatures caused a weak boundary layer of epoxy resin, which resulted in a deterioration of mechanical properties in the epoxy resin and thus led to poor adhesion property between the underfill/FR-4 substrate.

  • PDF

Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams

  • Mirjavadi, Seyed Sajad;Afshari, Behzad Mohasel;Shafiei, Navvab;Hamouda, A.M.S.;Kazemi, Mohammad
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.415-426
    • /
    • 2017
  • The thermo-mechanical vibration behavior of two dimensional functionally graded (2D-FG) porous nanobeam is reported in this paper. The material properties of the nanobeam are variable along thickness and length of the nanobeam according to the power law function. The nanobeam is modeled within the framework of Timoshenko beam theory. Eringen's nonlocal elasticity theory is used to develop the governing equations. Using the generalized differential quadrature method (GDQM) the governing equations are solved. The effect of porosity, temperature distribution, nonlocal value, L/h, FG power indexes along thickness and length and are investigated using parametric studies.

Study on the Thermo-Mechanical Behaviors of Fiber Metal Laminates Using the Classical Lamination Theory (고전적층이론을 이용한 섬유금속적층판의 열 . 거동 연구)

  • Choi, Heung-Soap;Roh, Hee-Seok;Kang, Gil-Ho;Ha, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.394-401
    • /
    • 2004
  • In this study the mechanical behaviors of fiber metal laminates(FMLs) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also, carpet plots of effective elastic moduli, Poisson's ratio and the thermal expansion coefficient for GLARE FML are plotted.

Mechanical Properties of Low Temperature and Fast Cure Epoxy with Various Mercaptans (Mercaptan 경화제에 의한 저온속경화 에폭시의 열적 기계적 물성)

  • Kim, Won Young;Eom, Se Yeon;Seo, Sang Bum;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.557-562
    • /
    • 2013
  • The thermal expansion and mechanical properties of diglycidyl ether of bisphenol A (DGEBA) with mercaptan hardeners were studied by a comparative method with an amine-adduct type hardener. Thermal expansion and dynamic mechanical properties were measured by thermo mechanical analysis (TMA) and dynamic mechanical ananlysis (DMA), respectively. The $T_g$ and the coefficient of thermal expansion (CTE) of epoxy/amine-adduct type hardener system were $82.6^{\circ}C$ and 71.2 $ppm/^{\circ}C$, respectively. As the number of -SH functional group of mercaptan hardener increased, the $T_g$ rapidly decreased and gradually increased up to ca. $80^{\circ}C$ and the CTE under the $T_g$ rapidly increased to ca. 200 $ppm/^{\circ}C$ from 80 $ppm/^{\circ}C$ and decreased to ca. 100 $ppm/^{\circ}C$. The crosslinking density of epoxy with amine-adduct type hardener was ca.1.5 $mol/cm^3$, while that of epoxy with mercaptan hardeners increased from 1.0 to 1.7 $mol/cm^3$, as the number of -SH functional group increased. The storage modulus can increase up to 2700MPa at $30^{\circ}C$.

Colorless and Transparent Polyimide Films from Poly(amic acid)s with Cross-linkable Anhydride End (가교 반응이 가능한 말단 무수물을 이용한 무색투명한 폴리이미드 필름)

  • Min, Ung-Ki;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.495-500
    • /
    • 2010
  • Crosslinked PI films were synthesized from 4,4'-(hexafluoro isopropylidene)diphthalic anhydride (6FDA) and bis[4-(3-aminophenoxy) phenyl] sulfone(BAPS) with various ratios of the reactive monomer cis-4-cyclohexene-1,2-dicarboxylic anhydride(CDBA). We prepared crosslinked poly(amic acid) (PAA) using a 0.1 wt% Grubbs catalyst as a crosslinking agent. The crosslinked PAA was heat-treated at different temperatures to give PI films. The thermo-mechanical properties and optical transparency of the PI films were investigated. The thermal properties of the PI films were examined using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), thermo-mechanical analysis(TMA), and universal tensile machine(UTM), and their optical transparencies were investigated using UV-vis. spectrophotometry. The thermomechanical properties of the PI films improved with increasing CDBA content. However, the optical transparency of the PI films decreased slightly with increasing CDBA content.

Fabrications and Properties of Colorless Polyimide Films Depending on Various Heat Treatment Conditions via Crosslinkable Monomer (가교 가능한 단량체를 이용한 무색투명 폴리이미드 필름 제조와 다양한 열처리에 따른 성질)

  • Choi, Il-Hwan;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.391-397
    • /
    • 2010
  • Poly(amic acid)(PAA) was prepared by reaction of bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxylicdianhydride(BTDA) containing double bond for crosslinking and bis[4-(3-aminophenoxy) phenyl] sulfone(BAPS) in N,N-dimethylacetamide(DMAc). The cast film of PAA was heat-treated at different temperatures to create polyimide(PI) films. With increasing thermal crosslinking temperatures from 250 to $350^{\circ}C$, the thermo-mechanical properties, degree of crosslinking, and optical transparency of the cross-linked PI were investigated. The maximum enhancement in the thermo-mechanical properties was observed at a heat treatment condition of $350^{\circ}C$. However, the optical transparency was found to be optimal for $250^{\circ}C$ heat treatment. The degree of crosslinking in NMR was determined to be 85% to 93% with increasing annealing temperature conditions from 250 to $350^{\circ}C$.

A Study on the Assembly Process and Reliability of COF (Chip-On-Flex) Using ACFs (Anisotropic Conductive Films) for CCM (Compact Camera Module) (ACF를 이용한 CCM (Compact Camera Module)용 COF(Chip-On-Flex) 실장 기술 및 신뢰성 연구)

  • Chung, Chang-Kyu;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.7-15
    • /
    • 2008
  • In this paper, the Chip-On-Flex (COF) assembly process using anisotropic conductive films (ACFs) was investigated and the reliability of COF assemblies using ACFs was evaluated. Thermo-mechanical properties of ACFs such as coefficient of thermal expansion (CTE), storage modulus (E'), and glass transition temperature $(T_g)$ were measured to investigate the effects of ACF material properties on the reliability of COF assemblies using ACFs. In addition, the bonding conditions for COF assemblies using ACFs such as time, temperature, and pressure were optimized. After the COF assemblies using ACFs were fabricated with optimized bonding conditions, reliability tests were then carried out. According to the reliability test results, COF assemblies using the ACF which had lower CTE and higher $T_g$ showed better thermal cycling reliability. Consequently, thermo-mechanical properties of ACFs, especially $T_g$, should be improved for high thermal cycling reliability of COF assemblies using ACFs for compact camera module (CCM) applications.

  • PDF