• Title/Summary/Keyword: Thermo-electric effect

Search Result 32, Processing Time 0.032 seconds

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Construction and Testing of a radiation-beam powered TA (ThermoAcoustic) washer for grease removal

  • Chen, Kuan;DaCosta, David H.;Kim, Yeongmin;Oh, Seung Jin;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • A small washer powered directly and solely by thermal radiation was constructed and tested to explore the feasibility of using solar energy or other types of thermal radiation for washing and cleaning. In principle, TA (ThermoAcoustic) washers have the benefits of simpler design and operation and fewer energy conversion processes, thus should be more energy efficient and cost less than electric washing/cleaning systems. The prototype TA converter we constructed could sustain itself with consistent fluid oscillations for more than 20 minutes when powered by either concentrated solar radiation or an IR (infrared) heater. The frequencies of water oscillations in the wash chamber ranged from 2.6 to 3.6 Hz. The overall conversion efficiency was lower than the typical efficiencies of TA engines. Change in water temperature had little effect on the oscillatory flow in the TA washer due to its low efficiency. On the other hand higher water temperatures enhanced grease removal considerably in our tests. Methods for measuring the overall conversion efficiency, frictional loss, and grease removal of the TA washing system we designed were developed and discussed.

Studies on magneto-electro-elastic cantilever beam under thermal environment

  • Kondaiah, P.;Shankar, K.;Ganesan, N.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.205-217
    • /
    • 2012
  • A smart beam made of magneto-electro-elastic (MEE) material having piezoelectric phase and piezomagnetic phase, shows the coupling between magnetic, electric, thermal and mechanical under thermal environment. Product properties such as pyroelectric and pyromagnetic are generated in this MEE material under thermal environment. Recently studies have been published on the product properties (pyroelectric and pyromagnetic) for magneto-electro-thermo-elastic smart composite. Hence, the magneto-electro-elastic beam with different volume fractions, investigated under uniform temperature rise is the main aim of this paper, to study the influence of product properties on clamped-free boundary condition, using finite element procedures. The finite element beam is modeled using eight node 3D brick element with five nodal degrees of freedom viz. displacements in the x, y and z directions and electric and magnetic potentials. It is found that a significant increase in electric potential observed at volume fraction of $BaTiO_3$, $v_f$ = 0.2 due to pyroelectric effect. In-contrast, the displacements and stresses are not much affected.

Performance Analysis of Cooling Module using Peltier Elements (펠티어 소자를 이용한 냉방모듈 성능해석)

  • Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.5-8
    • /
    • 2011
  • Thermal analysis of a cooling module using Peltier elements are performed using a commercial software, CFD-ACE+. A standard k-e two-equation turbulent model is applied in order to represent the turbulent shear stress. Computed values are compared with the theoretical values for the validation. The effect of mass flow rates and transferred heat amounts on the temperature distributions inside the cooling system is analyzed. It was found that the increase in the mass flow rates causes the exit temperature rise. The increase in the absorbed heat amount diminished the overall temperature on the fin surfaces. In the present analysis, the material characteristics of the Peltier element itself are not considered. In the future, the effect of the turbulence models and material characteristics will be studied in detail.

  • PDF

Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • In this article the frequency response of magneto-flexo-electric rotary porous (MFERP) nanobeams subjected to thermal loads has been investigated through nonlocal strain gradient elasticity theory. A quasi-3D beam model beam theory is used for the expositions of the displacement components. With the aid of Hamilton's principle, the governing equations of MFERP nanobeams are obtained. Further, administrating an analytical solution the frequency problem of MFERP nanobeams are solved. In addition the numerical examples are also provided to evaluate the effect of nonlocal strain gradient parameter, hygro thermo environment, flexoelectric effect, in-plane magnet field, volume fraction of porosity and angular velocity on the dimensionless eigen frequency.

Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC

  • Safari, Mohammad;Mohammadimehr, Mehdi;Ashrafi, Hossein
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2021
  • In this article, free vibration behavior of electro-magneto-thermo sandwich Timoshenko beam made of porous core and Graphene Platelet Reinforced Composite (GPLRC) in a thermal environment is investigated. The governing equations of motion are derived by using the modified strain gradient theory for micro structures and Hamilton's principle. The magneto electro are under linear function along the thickness that contains magnetic and electric constant potentials and a cosine function. The effects of material length scale parameters, temperature change, various distributions of porous, different distributions of graphene platelets and thickness ratio on the natural frequency of Timoshenko beam are analyzed. The results show that an increase in aspect ratio, the temperature change, and the thickness of GPL leads to reduce the natural frequency; while vice versa for porous coefficient, volume fractions and length of GPL. Moreover, the effect of different size-dependent theories such as CT, MCST and MSGT on the natural frequency is investigated. It reveals that MSGT and CT have most and lowest values of natural frequency, respectively, because MSGT leads to increase the stiffness of micro Timoshenko sandwich beam by considering three material length scale parameters. It is seen that by increasing porosity coefficient, the natural frequency increases because both stiffness and mass matrices decreases, but the effect of reduction of mass matrix is more than stiffness matrix. Considering the piezo magneto-electric layers lead to enhance the stiffness of a micro beam, thus the natural frequency increases. It can be seen that with increasing of the value of WGPL, the stiffness of microbeam increases. As a result, the value of natural frequency enhances. It is shown that in hc/h = 0.7, the natural frequency for WGPL = 0.05 is 8% and 14% less than its for WGPL = 0.06 and WGPL = 0.07, respectively. The results show that with an increment in the length and width of GPLs, the natural frequency increases because the stiffness of micro structures enhances and vice versa for thickness of GPLs. It can be seen that the natural frequency for aGPL = 25 ㎛ and hc/h = 0.6 is 0.3% and 1% more than the one for aGPL = 5 ㎛ and aGPL = 1 ㎛, respectively.

Effect of the Thermoelectric Element Thickness on the Thermal Performance of the Thermoelectric Micro-Cooler (마이크로 열전냉각기의 열성능에 대한 열전소자 두께의 영향)

  • Lee Kong-Hoon;Kim Ook-Joong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.211-217
    • /
    • 2006
  • The three-dimensional numerical analysis has been carried out to figure out the effect of the thermoelectric element thickness on the thermal performance of the thermo-electric micro-cooler. The small-size and column-type thermoelectric cooler is considered. It is known that tellurium compounds currently have the highest cooling performance around the room temperature. Thus, in the present study, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ are selected as the n- and p-type thermoelectric materials, respectively. The thermoelectric leg considered is less than $20{\mu}m$ thick. The thickness of the leg may affect the thermal and electrical transport through the interfaces between the leg and metal conductors. The effect of the thermoelectric element thickness on the thermal performance of the cooler has been investigated with parameters such as the temperature difference, the current, and the cooling power.

Temperature Control of the Aluminum Plate with Pottier Module by PWM Current Control (PWM 전류제어와 펠티어 소자를 이용한 알루미늄 판의 온도 제어)

  • Pang Du-Yeol;Kwon Tae-Kyu;Lee Seong-Cheol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.897-900
    • /
    • 2005
  • This paper presents temperature control of aluminum plate using Peltier module. As one of the thermoelectric effect, Peltier effect is heat pumping phenomena by electric energy. So if current is charged to Peltier module, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier module is used to control the temperature of small aluminum plate with heating and cooling ability of Peltier module with current control and fan On/OFF control. And current control of Peltier module was accomplished by PWM method. As a results of experiments, it takes about 125sec to control temperature of aluminium plate between $30^{\circ}C\;and\;70^{\circ}C$ and about 70sec between $40^{\circ}C\;and\;60^{\circ}C$, in ambient temperature $29^{\circ}C$ while operating cooling fan only while cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

  • PDF

Experimental Study of Thermo-electric material using Lithium-Ammonia$(Li(NH_3)_n)$ Solution (리튬-암모니아 $(Li(NH_3)_n)$ 용액을 이용한 열전기적 특성 실험)

  • Park, Han-Woo;Kim, Ji-Beom;Jeon, Joon-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.263-270
    • /
    • 2011
  • The aim of this paper is, through the experiment of Lithium-Ammonia solutions $(Li(NH_3)_n)$, to analyze and verify a thermoelectric-conversion property at near Ammonia-boiling point ($-40^{\circ}C$). The experiment results show that the solutions with 0.58 MPM~1.87 MPM generate thermoelectric power at temperature difference $({\Delta}T=0{\sim}15^{\circ}C)$ where Current is constantly proportional to Voltage. This paper provides a new insight into the development of a thermoelectric material.