DOI QR코드

DOI QR Code

Experimental Study of Thermo-electric material using Lithium-Ammonia$(Li(NH_3)_n)$ Solution

리튬-암모니아 $(Li(NH_3)_n)$ 용액을 이용한 열전기적 특성 실험

  • Park, Han-Woo (Dept. of Information & Communications Engineering, Dongguk University - Seoul) ;
  • Kim, Ji-Beom (Dept. of Information & Communications Engineering, Dongguk University - Seoul) ;
  • Jeon, Joon-Hyeon (Dept. of Information & Communications Engineering, Dongguk University - Seoul)
  • 박한우 (동국대학교-서울, 정보통신공학과) ;
  • 김지범 (동국대학교-서울, 정보통신공학과) ;
  • 전준현 (동국대학교-서울, 정보통신공학과)
  • Published : 2011.04.30

Abstract

The aim of this paper is, through the experiment of Lithium-Ammonia solutions $(Li(NH_3)_n)$, to analyze and verify a thermoelectric-conversion property at near Ammonia-boiling point ($-40^{\circ}C$). The experiment results show that the solutions with 0.58 MPM~1.87 MPM generate thermoelectric power at temperature difference $({\Delta}T=0{\sim}15^{\circ}C)$ where Current is constantly proportional to Voltage. This paper provides a new insight into the development of a thermoelectric material.

본 논문의 목적은 리튬-암모니아 솔루션$(Li(NH_3)_n)$의 실험을 통하여 암모니아물질의 임계점인 $-40^{\circ}C$ 근처에서의 열전특성을 분석하고 이를 증명하는 것이다. 실험 결과 0.58 MPM~1.87 MPM을 갖는 리튬-암모니아 솔루션 $(Li(NH_3)_n)$ 은 온도차$({\Delta}T=0{\sim}15^{\circ}C)$에서 전류가 전압에 비례하는 열전전력을 발생시킨다는 사실을 확인하였다. 본 논문은 열전 물질 개발에 새로운 방향을 제시할 것이다.

Keywords

References

  1. Park, J. P. and Heo, W. H., "Technical Trend of Thermoelectric Cooling in Semiconductor Materials," RIST., Research Report, http://www.rist.re.kr, 1-29(2004).
  2. Jovanovic, V., Ghamaty, S., Krommenhoek, D. and Bass, J C., "High Coefficient of Performance Quantum well Thermoelectric Nano Cooler," ASME., Proceedings of IPACK2007, 1-7(2007).
  3. Edwards, P. P., "Polarons, Bipolarons and Possible High-Tc Superconductivity in Metal-Ammonia Solutions," Journal of Superconductivity, 13(6), 867-1000(2000). https://doi.org/10.1023/A:1026425502509
  4. Cohen, M. H. and Thompson, J. C., "The Electronic and Ionic Structures of Metal-ammonia Solutions," Advances in physics, 17, 857-907(1968). https://doi.org/10.1080/00018736800101396
  5. Miles, M. H. and Harris, W. S., "Decomposition Reaction of Concentrated lithium-Ammonia Solutions," J. Electrochem. Soc., 121, 459-462(1974). https://doi.org/10.1149/1.2401838
  6. Hayama, S., Skipper, N. T., Wasse, J. C. and Thompson, H., "Xray Diffraction Studies of Solutions of Lithium in Ammonia: The Structure of the Metal-Nonmetal Transition," J. Chem. Phys., 116(7), 2991-2996(2002). https://doi.org/10.1063/1.1436120
  7. Joshua, J. and Morrel, H. C., "Metal-nonmetal Transition in Metalammonia Solutions," Phys. Rev. B, 13(4), 1548-1568(1976). https://doi.org/10.1103/PhysRevB.13.1548
  8. THOMPSON, J. C., "Metal-Nonmetal Transition in Metal-Ammonia Solutions," Reviews of modern physics, 40(4), 704-710(1968). https://doi.org/10.1103/RevModPhys.40.704
  9. Chuev, G. N., Quemerais P., and Crain J., "Nature of the Metalnonmetal Transition in Metal-ammonia Solutions. I. Solvated Electrons at Low Metal Concentrations," J. Chem. Phys., 127 (2007).
  10. Ottewill, G. A., "Metal Ammonia Solutions-pure Chemistry," Education In Chemistry, 36(2), 48-49(1999).
  11. Kraus, C. A., "Solutions of Metals in Non-metallic Solvents; IV. Material Effects Accompanying the Passage of An Electrical Current Through Solutions of Metal in Liquid Ammonia. Migration Experiments," Am. Chem. Soc., 30, 1323-1344(1908). https://doi.org/10.1021/ja01951a001
  12. Hahne, S., Krebs, P. and Schindewolf, U., "Equilibrium Model for the Interpretation of the Conduction Properties of Metal- Ammonia Solutions," J. Chem. 55, 2211-2216(1977).

Cited by

  1. Thermoelectric Efficiency Improvement in Vacuum Tubes of Decomposing Liquid Lithium-Ammonia Solutions vol.51, pp.3, 2013, https://doi.org/10.9713/kcer.2013.51.3.358