• 제목/요약/키워드: Thermo-elastic

검색결과 250건 처리시간 0.021초

Generalized shear deformation theory for thermo elastic analyses of the Functionally Graded Cylindrical shells

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.403-417
    • /
    • 2014
  • The present paper addresses a general formulation for the thermo elastic analysis of a functionally graded cylindrical shell subjected to external loads. The shear deformation theory and energy method is employed for this purpose. This method presents the final relations by using a set of second order differential equations in terms of integral of material properties along the thickness direction. The proposed formulation can be considered for every distribution of material properties, whether functional or non functional. The obtained formulation can be used for manufactured materials or structures with numerical distribution of material properties which are obtained by using the experiments. The governing differential equation is applied for two well-known functionalities and some previous results are corrected with present true results.

Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment

  • Vinyas, M.;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.351-367
    • /
    • 2017
  • In this article, the multiphysics response of magneto-electro-elastic (MEE) cantilever beam subjected to thermo-mechanical loading is analysed. The equilibrium equations of the system are obtained with the aid of the principle of total potential energy. The constitutive equations of a MEE material accounting the thermal fields are used for analysis. The corresponding finite element (FE) formulation is derived and model of the beam is generated using an eight noded 3D brick element. The 3D FE formulation developed enables the representation of governing equations in all three axes, achieving accurate results. Also, geometric, constitutive and loading assumptions required to dimensionality reduction can be avoided. Numerical evaluation is performed on the basis of the derived formulation and the influence of various mechanical loading profiles and volume fractions on the direct quantities and stresses is evaluated. In addition, an attempt has been made to compare the individual effect of thermal and mechanical loading with the combined effect. It is believed that the numerical results obtained helps in accurate design and development of sensors and actuators.

A mathematical approach for the effect of the rotation on thermal stresses in the piezo-electric homogeneous material

  • Ramady, Ahmed;Dakhel, B.;Balubaid, Mohammed;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • 제25권5호
    • /
    • pp.471-478
    • /
    • 2020
  • In this work, the analytical solution for the stresses in piezo-thermo-elastic homogeneous, transversely isotropic material under the effect of the rotation has investigated. The thermoelasticity theory has used to study the problem. The material subjected to boundary conditions. Finally, the numerical solution has carried out piezo - thermo-elastic material under the effect of rotation, to illustrate the analytical development. The corresponding simulated results of various physical quantities such as the displacements and the stresses, the temperature and the electrical displacement have presented graphically.

항공기 제동장치의 열탄성 마찰 접촉 해석 (Thermo-elastic Frictional Contact Analysis of Airplane Brakes)

  • 이창원;최용기;곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.889-894
    • /
    • 2001
  • A three dimensional transient thermo-elastic frictional contact analysis of airplane brakes is performed. The velocity history of the airplane during braking is calculated from energy conservation law. ABAQUS code is used in the analysis, and user subroutines supported in the ABAQUS are coded to calculate the frictional heat generation between pads and linings attached to back/pressure plate and rotor, respectively. Numerical results are compared with experimental ones.

  • PDF

보형 공진기의 열탄성 감쇠 해석 (Analysis of the Thermo-Elastic Damping of a Beam-Type Resonator)

  • 이희남;박준성;세르게이 사라플로프;한순우;박진호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.682-686
    • /
    • 2014
  • This paper deals with the thermo-elastic damping (TED) due to the temperature change in a beam when it is in a resonant condition. Based on previous references, the analytical formulation for TED of a resonant thin beam was derived, and then TED was expressed as a function of the geometry of the beam, especially, its thickness. It was clearly shown that TED of a resonant beam is significantly varied for different thickness. Finally, the worst thickness of the beam has been identified in regard to the high-Q factor, and the result was compared to the finite element analysis.

  • PDF

On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.659-674
    • /
    • 2020
  • The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical, thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton's principle and then solved implementing Galerkin's method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.

Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.33-38
    • /
    • 2017
  • This research tries to present a nonlinear thermo-elastic solution for a functionally graded spherical shell subjected to mechanical and thermal loads. Geometric nonlinearity is considered using the Lagrange or finite strain tensor. Non-homogeneous material properties are considered based on a power function. Adomian's decomposition method is used for calculation of nonlinear results. Nonlinear results such as displacement can be evaluated for sphere in terms of different indexes of non-homogeneity. A comprehensive comparison between linear and nonlinear results and evaluation of the percentage of difference between them can be performed in this paper. The obtained results indicate that the improvement of the results due to usage of nonlinear analysis is depending on the non-homogeneous index.

Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam

  • Kaur, Iqbal;Lata, Parveen;Singh, Kulvinder
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.29-37
    • /
    • 2022
  • The present paper deals with the application of one dimensional piezoelectric materials in particular piezo-thermoelastic nanobeam. The generalized piezo-thermo-elastic theory with two temperature and Euler Bernoulli theory with small scale effects using nonlocal Eringen's theory have been used to form the mathematical model. The ends of nanobeam are considered to be simply supported and at a constant temperature. The mathematical model so formed is solved to obtain the non-dimensional expressions for lateral deflection, electric potential, thermal moment, thermoelastic damping and frequency shift. Effect of frequency and nonlocal parameter on the lateral deflection, electric potential, thermal moment with generalized piezothermoelastic theory are represented graphically using the MATLAB software. Comparisons are made with the different theories of thermoelasticity.

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • 제19권4호
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.

Influence of variable thermal conductivity on waves propagating through thermo-elastic medium

  • Abo-Dahab, Sayed M.;Jahangir, Adnan;Dar, Adiya
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.459-467
    • /
    • 2022
  • We investigated the influence of variable thermal conductivity on waves propagating through the elastic medium. Infinitesimal deformation results in generation of thermal signal, and is analyzed by using dual phase lag heat (DPL) conduction model. The medium considered is homogenous, isotropic and bounded by thermal shock. The elastic waves propagating through the medium are considered to be harmonic in nature, and expressions for the physical variables are obtained accordingly. Analytically, we obtained the expressions for displacement components, temperature, micro-temperature component and stresses. The theoretical results obtained are computed graphically for the particular medium by using MATLAB.