• Title/Summary/Keyword: Thermo-Stability

Search Result 154, Processing Time 0.024 seconds

Finite element analysis of shear connection in composite beams exposed to fire (전단연결재의 내화성능에 대한 유한요소해석)

  • Lim, Ohk Kun;Choi, Sengkwan
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2018
  • A shear connection between the steel beam and concrete slab determines the stability of composite beams. An extensive numerical study to evaluate the resistance of the shear connection in a solid slab at high temperature was conducted. Three-dimensional thermo-mechanical finite element models were developed using a dynamic explicit method and concrete damaged plasticity model. Temperature-dependent plasticity parameters of the concrete model were proposed, and the accuracy of the developed model was obtained against experimental data. This investigation has revealed that a stud shearing failure occurs regardless of temperatures, and its shearing location changes in accordance with a rise in temperature. A new strength reduction formula has been presented to estimate the resistance of the shear connection at high temperatures.

Thermoelastic deformation properties of non-localized and axially moving viscoelastic Zener nanobeams

  • Ahmed E. Abouelregal;Badahi Ould Mohamed;Hamid M. Sedighi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.141-154
    • /
    • 2024
  • This study aims to develop explicit models to investigate thermo-mechanical interactions in moving nanobeams. These models aim to capture the small-scale effects that arise in continuous mechanical systems. Assumptions are made based on the Euler-Bernoulli beam concept and the fractional Zener beam-matter model. The viscoelastic material law can be formulated using the fractional Caputo derivative. The non-local Eringen model and the two-phase delayed heat transfer theory are also taken into account. By comparing the numerical results to those obtained using conventional heat transfer models, it becomes evident that non-localization, fractional derivatives and dual-phase delays influence the magnitude of thermally induced physical fields. The results validate the significant role of the damping coefficient in the system's stability, which is further dependent on the values of relaxation stiffness and fractional order.

A Study on Fire Resistance Character of a Tunnel and an Underground Structure (터널 및 지하구조물의 내화특성에 관한 연구)

  • Yoo, Sang-Gun;Kim, Jung-Joo;Park, Min-Yong;Kim, Eun-Kyum;Lee, Jun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.194-200
    • /
    • 2010
  • Recently, a longitudinal tunnel construction has increased because of subway construction extension, geomorphological effect and the development of construction Technologies etc. When the fire occurs in a tunnel and an underground structure, the many damage of human life and the economic losses are caused. In Korea, fire resistance character study of a tunnel and an underground structure is proceeding. However, when a concrete is exposed to high temperature, study of load carrying capacity reduction and stability evaluation for spalling of a concrete is not enough. Therefore in this study, fire resistance character of a concrete evaluated according to time heating temperature curve(RABT and RWS) and a result compared on virtual fire accident in order to apply fire scenario. Also this study performed thermo-mechanical coupled analysis of a FEM-based numerical technique and estimated fire-induced damage of a tunnel and an underground structure.

An effect of thermo-stimulation of lower abdomen on autonomic nervous system: An experimental study

  • Kim, Kyeong Han;Kim, Jong Uk;Kim, Bo Hyun;Shin, Jin Hyeon;Hong, Seong Jin;Lee, Sang Ryong;Yook, Tae-han
    • Journal of Pharmacopuncture
    • /
    • v.21 no.2
    • /
    • pp.98-103
    • /
    • 2018
  • Objective: DIt is need to evaluate he changes of the bio-signals through the hot-cold stimulation in the CV4. Methods: The 30 healthy participants were enrolled and randomly allocated, to one of three groups(10 participants for each group): the hot stone therapy(HST) group, or the cold stone therapy(CST) group or no treatment group(NT). All the participants took a rest for 10 minutes for stability before the test. And additional 10 minute rest after measurements of skin test and sEMG. After that two group received hot or cold stone therapy for 30 minutes and one group treated nothing with HRV test. Results: HRV LF value showed a significant increase over time in all three groups, but there was no significant difference between groups but HRV HF value did not show any significant difference with time in all three groups and there was no significant difference between groups. sEMG value showed a significant increase in the left side of the masseter muscle of the HST group and sebum levels was a significant decreased in HST group but no significant meaning was found. Conclusion: There was no objective evidence that hot-cold stimulation produced bio-signals changes in comparison to the control group, but additional studies are needed as the subjects were limited.

Bioremedation of petrolium pollution (유류오염의 미생물학적 제어)

  • 이상준;차미선;이근희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.02a
    • /
    • pp.14-28
    • /
    • 2001
  • As basic study for purpose bioremedation in oil-contaminated environment, Primarily, we isolated biosurfactant producer- strains utilized of oil-agar plate, and measured surface tension and emulsifying activity. We investigated in oil-contaminated soil and sea water. In this laboratory, Pseudomonas sp. EL-012S strain isolated from oil-contaminated soil was able to product novel biosurfactant under the optimal culture condition. Its condition was n-hexadecane 2.0%, NH$_4$NO$_3$0.4%, Na$_2$HPO$_4$0.6%, KH$_2$PO$_4$0.4%, MgSO$_4$.7$H_2O$ 0.02%, CaCl$_2$.2$H_2O$ 0.001%, FeSO.7$H_2O$ 0.001%, initial pH 7.0 and aeration at 3$0^{\circ}C$, respectively. This biosurfactant was produced in both late-exponential and early-stationary phase. The biosurfactant from Pseudomonas sp. EL-012S was composed of carbohydrate, lipid and protein. The purified-biosurfactant was examined two (biosurfactant type I, II) with the silica gel G60 column chromatography and the purified biosurfactant confirmed thin layer chromatography, high performed liquid chromatography and gas chromatography. The biosurfactant type I involved in carbohydrate-lipid-protein characteristics lowered surface tension of water to 27dyne/cm and interfacial tension 4.5dyne/cm aginst to n-hexadecane and the biosurfactant type B involved in carbohydrate lipid characteristics lowered surface tension of water to 30dyne/cm and interfacial tension 8dyne/cm against to n-hexadecane. Specially type I had the properties such as strong emulsifying activity, emulsion stability, pH-stability, thermo-stability, high cleaning activity and forming ability.

  • PDF

A Study on the Structural Integrity of Hypersonic Vehicles According to Flight Conditions (비행 환경에 따른 극초음속 비행체의 구조 건전성에 관한 연구)

  • Kang, Yeon Cheol;Kim, Gyubin;Kim, Jeong Ho;Cho, Jin Yeon;Kim, Heon Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.695-704
    • /
    • 2019
  • In hypersonic regime, the complicated interaction between the air and surface of aircraft results in intensive aerodynamic heating on body. Provided this phenomenon occurs on a hypersonic vehicle, the temperature of the body extremely increases. And consequently, thermal deformation is produced and material properties are degraded. Furthermore, those affect both the aerothermoelastic stability and thermal safety of structures significantly. With the background, thermal safety and dynamic stability are studied according to the altitude, flight time and Mach number. Based on the investigation, design guideline is suggested to guarantees the structural integrity of hypersonic vehicles in terms of both of thermal safety and dynamic stability.

A Study on the Thermo-mechanical Characteristics and Adhesion Reliability of Anisotropic Conductive Films Depend on the Curing Methods of Epoxy Resins (에폭시 레진의 경화방법에 따른 이방성 전도필름의 접합신뢰성 및 열적기계적 특성 변화)

  • Gil, Man-Seok;Seo, Kyoung-Won;Kim, Jae-Han;Lee, Jong-Won;Jang, Eun-Hee;Jeong, Do-Yeon;Kim, Su-Ja;Kim, Jeong-Soo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • To improve the curing method of anisotropic conductive film (ACF) at low temperature, it was studied to replace the thermal latent curing agent of imidazole compounds by the curing agent of cationically initiating type. Thermo-mechanical properties such as glass transition temperature, storage modulus, and coefficient of thermal expansion were investigated for the analysis of curing behavior. The reliability of ACF were observed in thermal cycle and high temperature-high humidity test. ACF using cationic initiator showed faster curing, lower CTE, and higher $T_g$ than the case of using imidazole curing agent, which is important for the high temperature stability. Furthermore, ACF using cationic initiator maintained a stable contact resistance in reliability test, although it was cured at low temperature and fast rate. With these results, it was confirmed that the curing method of epoxy had great effect on thermo-mechanical properties and reliability of ACF.

Synthesis and Characterization of Epoxy Silane-modified Silica/Polyurethane-urea Nanocomposite Films (에폭시 변성 실리카 나노입자/폴리우레탄-우레아 나노복합체 필름의 제조 및 특성 연구)

  • Joo, Jin;Kim, Hyeon Seok;Kim, Jin Tae;Yoo, Hye Jin;Lee, Jae Ryung;Cheong, In Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.371-378
    • /
    • 2012
  • Hydrophilic silica nanoparticles (SNPs) were treated by using 3-glycidoxypropyltrimethoxy silane (GPTMS) and then they were blended with polyurethane-urea (PUU) emulsions to obtain SNPs/PUU nanocomposite films. Thermo-mechanical properties of the nanocomposite films were investigated by varying the grafted amount of GPTMS onto SNPs and the contents of SNPs in the PUU matrix. The thermo-mechanical properties of the nanocomposite films were also compared in terms of the dispersibility of SNPs in the PUU matrix and thermal curing of the GPTMS-grafted SNPs. The maximum amount of grafted GPTMS was $1.99{\times}10^{-6}\;mol/m^2$, and which covered ca. 53% of the total SNP surface area. $^{29}Si$ CP/MAS NMR analyses with the deconvolution of peaks revealed the details of polycondensation degree and patterns of GPTMS in the surface modification of SNPs. The surface modification did not significantly affect colloidal stability of the SNPs in aqueous medium; however, the hydrophobic modification of SNPs offered a favorable effect on the dispersibility of SNPs in the PUU matrix as well as better thermal stability. XRD patterns revealed that GPTMS-grafted SNPs broadened the reduced the characteristic peak of polyol in PUU matrix. The composite films became rigid and less flexible as the SNP content increased from 5 wt.% to 20 wt.%. Particularly, Young's modulus and tensile modulus significantly increased after the thermal curing reaction of the epoxy groups in the SNPs.

Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향)

  • Kim, Eun Ae;Bai, Byong Chol;Jeon, Young-Pyo;Lee, Chul Wee;Lee, Young-Seak;In, Se Jin;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.418-424
    • /
    • 2014
  • The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/$H_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and $H_3PO_4$ and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and $E_a$ (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/$H_3PO_4$ solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and $E_a$.

Na3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (라이오셀의 열 안정 및 내산화 특성 향상을 위한 Na3PO4 내염화 처리)

  • Kim, Hyeong Gi;Kim, Eun Ae;Lee, Young-Seak;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.25-32
    • /
    • 2015
  • The improved thermal stability and anti-oxidation properties of lyocell fiber were studied based on flame retardant treatment by using $Na_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various concentrations of $Na_3PO_4$ and the mechanism was proposed through experimental results of thermal stability and anti-oxidation. The integral procedural decomposition temperature (IPDT), limiting oxygen index (LOI) and activation energy ($E_a$) increased 30, 160% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of lyocell fiber were provided using $Na_3PO_4$ solution and the mechanism was also studied based on experimental results such as initial decomposition temperature (IDT), IPDT, LOI and $E_a$.