• Title/Summary/Keyword: Thermo-Elastic

Search Result 255, Processing Time 0.024 seconds

On the thermo-mechanical vibration of an embedded short-fiber-reinforced nanobeam

  • Murat Akpinar;Busra Uzun;Mustafa Ozgur Yayli
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.197-211
    • /
    • 2024
  • This work investigates the thermo-mechanical vibration frequencies of an embedded composite nano-beam restrained with elastic springs at both ends. Composite nanobeam consists of a matrix and short fibers as reinforcement elements placed inside the matrix. An approach based on Fourier sine series and Stokes' transform is adopted to present a general solution that can examine the elastic boundary conditions of the short-fiber-reinforced nanobeam considered with the Halpin-Tsai model. In addition to the elastic medium effect considered by the Winkler model, the size effect is also considered on the basis of nonlocal strain gradient theory. After creating an eigenvalue problem that includes all the mentioned parameters, this problem is solved to examine the effects of fiber and matrix properties, size parameters, Winkler stiffness and temperature change. The numerical results obtained at the end of the study show that increasing the rigidity of the Winkler foundation, the ratio of fiber length to diameter and the ratio of fiber Young's modulus to matrix Young's modulus increase the frequencies. However, thermal loads acting in the positive direction and an increase in the ratio of fiber mass density to matrix mass density lead to a decrease in frequencies. In this study, it is clear from the eigenvalue solution calculating the frequencies of thermally loaded embbeded short-fiber-reinforced nanobeams that changing the stiffness of the deformable springs provides frequency control while keeping the other properties of the nanobeam constant.

Influence of variable thermal conductivity on waves propagating through thermo-elastic medium

  • Abo-Dahab, Sayed M.;Jahangir, Adnan;Dar, Adiya
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.459-467
    • /
    • 2022
  • We investigated the influence of variable thermal conductivity on waves propagating through the elastic medium. Infinitesimal deformation results in generation of thermal signal, and is analyzed by using dual phase lag heat (DPL) conduction model. The medium considered is homogenous, isotropic and bounded by thermal shock. The elastic waves propagating through the medium are considered to be harmonic in nature, and expressions for the physical variables are obtained accordingly. Analytically, we obtained the expressions for displacement components, temperature, micro-temperature component and stresses. The theoretical results obtained are computed graphically for the particular medium by using MATLAB.

Effect of Melting Pool on the Residual Stress of Welded Structures in Finite Element Analysis

  • Lee, Jang-Hyun;Hwang, Se-Yun;Yang, Yong-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.14-23
    • /
    • 2007
  • Welding processes cause undesirable problems, such as residual stresses and deformations due to the thermal loads imposed by local heating, melting, and cooling processes. This paper presents a computational modeling technique to simulate the Gas Metal Arc Welding (GMAW) process, emphasizing the effect of the melting bead on the residual stress distribution. Both a three-bar analogy and a three-dimensional thermo-mechanical finite element analysis are carried out in order to explain the effect. Element (de)activation, enthalpy, and adjustment of the reference temperature of thermal strain are considered with respect to the effect of the weld filler metal added to the base metal during a thermo-elastic-plastic analysis. Stress distributions obtained by the present study are compared with measured values and available data from other studies. The effect of the melting bead on the residual stress distribution is discussed and demonstrated.

A Theoretical Model for Predicting Matrix Crack Density Growth (기지균열의 밀도증가를 예측하기 위한 이론적 모형)

  • 이종원;김진원;김응태;안석민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.203-206
    • /
    • 2002
  • The present study proposes a theoretical model for predicting the matrix crack density growth of each layer in composite laminates subjected to thermo-mechanical loads. Each layer with matrix cracks is treated as an equivalent continuum of degraded elastic stiffnesses which are functions of the matrix crack density in each slyer. The energy release rate as a function of the degraded elastic stiffnesses is then calculated for each layer as functions of thermo-mechanical loads externally applied to the laminate. The matrix crack densities of each layer in general laminates are predicted as functions of the thermo-mechanical loads applied to a number of laminates. Comparisons of the present study with experimental data in the open literatures are also provided.

  • PDF

Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects

  • Faleh, Nadhim M.;Abboud, Izz Kadhum;Nori, Amer Fadhel
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.707-717
    • /
    • 2020
  • In this paper, analysis of thermal post-buckling behaviors of sandwich nanobeams with two layers of multi-phase magneto-electro-thermo-elastic (METE) composites have been presented considering geometric imperfection effects. Multi-phase METE material is composed form piezoelectric and piezo-magnetic constituents for which the material properties can be controlled based on the percentages of the constituents. Nonlinear governing equations of sandwich nanobeam are derived based on nonlocal elasticity theory together with classic thin beam model and an analytical solution is provided. It will be shown that post-buckling behaviors of sandwich nanobeam in thermo-electro-magnetic field depend on the constituent's percentages. Buckling temperature of sandwich nanobeam is also affected by nonlocal scale factor, magnetic field intensity and electrical voltage.

Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels

  • Arefi, Mohammad;Mohammadi, Masoud;Tabatabaeian, Ali;Dimitri, Rossana;Tornabene, Francesco
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.525-536
    • /
    • 2018
  • This paper focuses on the application of the first-order shear deformation theory (FSDT) to thermo-elastic static problems of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical pressure vessels. A symmetric displacement field is considered as unknown function along the longitudinal direction, whereas a linear distribution is assumed along the thickness direction. The cylindrical pressure vessels are subjected to an inner and outer pressure under a temperature increase. Different patterns of reinforcement are applied as distribution of CNTs. The effective material properties of FG-CNTRC cylindrical pressure vessels are measured based on the rule of mixture, whereas the governing equations of the problem are here derived through the principle of virtual works. A large parametric investigation studies the effect of some significant parameters, such as the pattern and volume fraction of CNTs, on the longitudinal distribution of deformation, strain and stress components, as useful tool for practical engineering applications.

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM

  • Yaghoobi, Hessameddin;Valipour, Mohammad Sadegh;Fereidoon, Abdolhossein;Khoshnevisrad, Pooria
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.753-776
    • /
    • 2014
  • In this paper, nonlinear vibration and post-buckling analysis of beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to thermo-mechanical loading are studied. The thermo-mechanical material properties of the beams are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and to be temperature-dependent. The assumption of a small strain, moderate deformation is used. Based on Euler-Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this PDE problem which has quadratic and cubic nonlinearities is simplified into an ODE problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the influences of thermal effect, the effect of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogenity are presented for future references. Results show that the thermal loading has a significant effect on the vibration and post-buckling response of FG beams.

Development of Aerodynamic Thermal Load Element for Structural Design of Hypersonic Vehicle (극초음속 비행체의 구조설계를 위한 공력 열하중 요소 개발)

  • Kang, Yeon Cheol;Kim, Gyu Bin;Kim, Jeong Ho;Cho, Jin Yeon;Kim, Heon Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.892-901
    • /
    • 2018
  • An efficient aerodynamic thermal load element is developed to reflect the effect of coupled aero-thermo-elastic behaviors in the early design stage of hypersonic vehicle. To this aim, semi-analytic relationships depending on structural deformation are adopted for pressure and thermal load, and the element is formulated based on the relations. The proposed element is implemented in the form of ABAQUS user subroutine, and coupled finite element analysis is carried out to investigate the aero-thermo-elastic behaviors of control surface of hypersonic vehicle. Through the analysis, usefulness of the proposed aerodynamic thermal load element is identified.

Thermo-mechanical Contact Analysis on Disk Brakes by Using Simplex Algorithm

  • Cho, C.;Sun, Chan-Woong;Kim, Ju-Yong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.399-400
    • /
    • 2002
  • A numerical procedure for analyzing thermo-elastic contact applied to an automotive disk brake and calculating subsurface stress distribution has been developed. The proposed procedure takes the advantage of the simplex algorithm to save computing time. Flamant's solution and Boussinesq's solution are adopted as Green function in analysis. Comparing the numerical results with the exact solutions has proved the validity of this procedure.

  • PDF