• 제목/요약/키워드: Thermo Labo II

검색결과 5건 처리시간 0.017초

반복세탁 및 건조방법이 드레스셔츠의 물성에 미치는 영향(II) (The Changes in Properties of Dress Shirts by Repeated Washing and Drying (II))

  • 이송자;성수광;권헌선
    • 한국의류산업학회지
    • /
    • 제1권3호
    • /
    • pp.259-263
    • /
    • 1999
  • This study was carried out to investigate the changes of thermal properties such as warmth retaining and contact warm/cool feeling of commercial dress shirts by repeated washing and drying by sun and dryer. Three kinds of fabrics such as cotton 100%, cotton/polyester 80/20% and polyester 100% were repeatedly washed and dried, and then used as specimen. Thermo Labo II type was employed to measure the thermal properties. At the same time, structural properties such as thickness, weight, bulk density, porosity, moisture vapor permeability and air permeability were analysed.

  • PDF

보온력에 미치는 피복재료와 겹침의 영향 (The effects of Clothing Materials and Multi-layered Textiles on Thermal Resistance Value)

  • 손원교;차옥선
    • 대한가정학회지
    • /
    • 제37권11호
    • /
    • pp.157-165
    • /
    • 1999
  • This study was carried out to examine the effect of clothing materials and multi-layered textiles on thermal resistance value. Cotton, polyester, wool, silk, rayon and acetate were selected for the specimens. Thermal resistance value was tested with 2 kinds of methods(thermo labo II and BK type tester). The results were as follows; 1. The effects of clothing materials for thermal resistance value were decreased by adding layers. 2. When the fabrics are measured with multiple layers, the fabric of the lowest thermal resistance value at single layer was showed the highest increasing tendency for all test methods.

  • PDF

삼각사와 원형사로 제직된 직물의 태, 열적성질 및 광학적 성질의 비교 (Comparison of hand, thermal and optical properties of woven fabrics made of triangular and circular shaped filaments)

  • 심현주;홍경아
    • 감성과학
    • /
    • 제5권3호
    • /
    • pp.47-52
    • /
    • 2002
  • 직물의 태는 손으로 만져 보았을 때 느껴지는 감촉, 육안으로 느껴지는 감각, 그리고 직물의 물리적 역학적 성질 등이 함께 어울어져 이루어지는 것이다. 따라서 본 연구에서는 폴리에스테르 원형사와 삼각사로 제직된 직물의 태와 온/냉감 및 광택도를 측정하였다. 삼각단면사로 제직된 직물이 원형단면사로 제직된 직물보다 더 좋은 태를 보였으며 열전달계수가 크게 나타나 냉감을 느낄 수 있었으며 높은 반사율을 보였다.

  • PDF

면직물의 구성특성과 냉온감과의 상관성에 관한 연구( I ) -상대습도 $65\%$하에서- (A Study on the Relationship between Structural Characteristics of Cotton Fabrics and their Cool-and-Warm Felling (I) - at $65\%$ Relative Humidity-)

  • 장지혜
    • 한국의류학회지
    • /
    • 제14권2호
    • /
    • pp.152-163
    • /
    • 1990
  • The purpose of this study is to experimentally analyze the relationship between structural characteristics of cotton fabrics and their cool-and-warm felling in order to develop more comfortable fabrics. Comfort in textile products has been emphasized as consumers preferred performance to fashion of clothing. Thermal comfort of clothing is a basic parameter of the comfort sensation which is usually represented by the cool-and-warm feeling felt by human skin. Cloo-and-warm feeling is perceived by the heat flux which transfers heat energy stored in an object to skin. We feel warm (cool) if the temperature of nerve extremity in skin ascends (descends). As cool-and-warm feeling determines the comfort sensation of clothing, it is important to develop new comfort fabrics. Although considerable works have been made on the body, clothing, and environment, there has been no research study on the structural characteristics of fabrics and their cool and warm feeling. Cool-and-warm feeling is closely related to the transient heat transfer property. This research study used the cotton fabrics manufactured in Korea as sample and measured $q_{max}$ value with thermal property measuring instrument (Thermo-Labo II type). $q_{max}$ values estimated by polynomial regression equation were compared with those observed in this study. This study also identified the structural parameters of cotton fabrics for a specific range of $q_{max}$ values. The findings of this study can be summarized as follows: 1) As the thickness, porosity and air permeability of cotton fabrics increase, $q_{max}$ value decreases. 2) As the fabric count and over factor of cotton fabrics increase, $q_{max}$ value also increases. 3) $q_{max}$ values have been estimated by simple and polynomial regression equations developed in this study. Regression curves which have been plotted by polynomial regression equations also provided with the range of structural parameters for a specific range of $q_{max}$ values of cotton fabrics. This study would be significant in that it has identified the structural Parameters for the cool-and-warm feeling of cotton fabric at $65\%$ relative humidity.

  • PDF

투습발수직물과 보온단열소재의 열 및 수분전달 특성 (Thermal and Water Transmission Properties of Vapor Permeable Water Repellent Fabrics and Thermal Insulation Batting Materials)

  • 조길수;최종명;이정주;이선우
    • 한국의류학회지
    • /
    • 제16권2호
    • /
    • pp.237-244
    • /
    • 1992
  • The purpose of this study was to comparatively evaluate thermal and water transmission properties of several vapor permeable water repellent (VPWR) fabrics and synthetic battings that became available in recent years. Five VPWR fabrics evaluated were Hipora in three coating variants, $Gore-Tex^{\circledR}$ and $Aitace^{\circledR}$. Battings evaluated were $Viwarma^{\circledR}$, $Uniwarmr^{\circledR}$, $Thinsulate^{\circledR}$, and $Airseal^{\circledR}$ Thermal resistance and water vapor transmission were measured for each fabric and batting and in all combinations. Thermal resistance at zero and 37 cm/sec air velocity was determined by the Thermo Labo II technique for simultaneously measuring conduction and radiation heat transfer. Water vapor transmission over 24 hours was measured by a modified weight-gain method in a compact humid chamber at conditions simulating the clothing climate under heavy exercise ($40{\pm}1^{\circ}C$, $90{\pm}2\%$ R.H., and 0.5 m/sec air velocity). Fabric porosity was calculated from fiber density and fabric weight, thickness, and area. Thermal resistance results for the fabrics showed the effectiveness of coatings in inhibiting heat transfer. Measurements taken in wind were: $31.1\~37.6\%$ for $Hipora^{\circledR}$ variants; $31.0\%$ for $Gore-Tex^{\circledR}$; and $18.4\%$ for $Aitaca^{\circledR}$ Measurements without wind were higher but in the same order. Water vapor transmission results were in reverse order: $Aitac^{\circledR}$, $8.8 kg/m^{2};\;Gore-Tex^{\circledR}$, 6.4 kg/$m^{2}$; and $Hipora^{\circledR},\;4.4\~6.0\;kg/m^{2}$. In general thermal resistance increased with porosity. For battings, the thermal resistance with wind results were: $Viwarmu^{\circledR}$, $65.0\%;\; Thinsulate^{\circledR}$, $62.0\%$; $Uniwarm^{\circledR}$, $61.0\%$; and $Airseala^{\circledR},\;53.1\%$. Thermal resistance was proportional to thickness. Thermal resistance of fabric-batting combinations were $20\%$ higher than those of the battings only. Water vapor transmission for combinations was mainly affected by that for the VPWR fabric used.

  • PDF