• Title/Summary/Keyword: Thermally Stimulated Current

Search Result 86, Processing Time 0.027 seconds

A Study on Thermally Stimulated Current Properties of EPR due to filler Dependence (충.진제 변화에 의한 EPR의 열자격전류 특성에 관한 연구)

  • 이성일;박일규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.132-135
    • /
    • 2000
  • This paper present the results of measured Thermally Stimulated Current of EPR(Ethylene Propylene Rubber) sheet material with variation of bias temperature range of -35~80[$^{\circ}C$], the quality of the material of electrode, condition. The origins of these peaks are that, low temperature peak seems to result from dipole, and high temperature peak from the orientation electronic trap.

  • PDF

Thermally stimulated current analysis of (Ba,SR)TiO₃ capacitor ((Ba,Sr)TiO₃ 커패시터의 thermally stimulated current 분석)

  • Lee, Gi Seon;Seo, Gwang Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.17-17
    • /
    • 2001
  • 고유전 (Ba, Sr)TiO₃ (BST) 박막을 이용한 DRAM storage capacitor의 저전계 영역에서의 전하손실을 발생시키는 커패시터의 누설전류는 유전완화전류와 진성 누설전류로 이루진다고 알려져 있다. 특히, 기가급 DRAM의 동작 전압(~IV)에서 유전완화전류가 진성 누설전류에 비해 훨씬 크기 때문에 이에 대한 심도 있는 연구가 필요하다. 본 연구에서는 thermally stimulated current (TSC) 측정법을 BST 박막에 처음으로 적용하여 트랩의 에너지 level 및 공정변화에 따른 트랩 밀도의 상대적 평가를 하였다. 그리고, 기존에 사용되던 전류-전압(I-V) 측정이나 전류-시간(I-t) 측정과 비교 및 분석함으로써 유전완화 전류의 원인을 규명하고 TSC 측정법의 신뢰성을 살펴보았다. 먼저 안정적인 TSC 측정을 위해 전계, 시간, 온도 및 승온속도에 따른 polarization condition을 알아보았다 이 조건을 이용한 TSC 측정으로부터 BST 박막에서의 트랩의 energy level이 0.20(±0.01) eV와 0.45(±0.02) eV임을 알 수 있었다. Rapid thermal annealing (RTA)을 이용한 후속 열처리에 따른 TSC 측정을 통하여 이 트랩들이 산소결핍(oxygen vacancy)에 기인함을 확인할 수 있었다. MIM BST 커패시터의 열처리에 대한 TSC 특성은 전류-전압(I-V) 및 전류-시간(I-t) 특성과 같은 경향성을 보인다. 이것은 TSC 측정이 BST 박막내의 트랩을 평가하는데 있어서 매우 효과적인 방법이라는 것을 보여준다.

A study on the properties of thermally stimulated current of $(Sr_{0.85}-Ca_{0.15})$$TiO_3$ grain boundary layer ceramic ($(Sr_{0.85}-Ca_{0.15})$$TiO_3$ 입계층 세라믹의 열자력전류 특성에 관한 연구)

  • 김진사;김성열;유영각;최운식;이준웅
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.396-403
    • /
    • 1996
  • In this paper, the (S $r_{0.85}$.C $a_{0.15}$)Ti $O_{3}$ of paraelectric grain boundary layer (GBL) ceramics were fabricated, and the analysis of microstructuye and the thermally stimulated current(TSC) were investigated for understanding effects of GBL's interfacial phenomenon on variations of electrical properties. As a result, the three peaks of .alpha., .alpha. and .betha. were obtained at the temperature of -20 [.deg. C], 20[.deg. C] and 80[.deg. C], respectively. The origins of these peaks are that the .alpha. peak observed at -20[.deg. C] looks like to be ascribed to the ionization excitation from donor level in the grain, and the .alpha.' peak observed at 20[.deg. C] appears to show up by detrap of the trapped carrier of border between the oxidation layer and the grain, and the .betha. peak observed at 80[.deg. C] seems to be resulted from hopping conduction of existing carrier in the trap site of the border between the oxidation and second phase. and second phase.

  • PDF

Thermally Stimulated Currents in Gamma Irradiated Polymer (감마선에 조사된 중합체의 열자극 전류)

  • Chu, Sung-Sil
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.49-55
    • /
    • 1982
  • Thermally stimulated currents of polymers have some properties as radiation dosimetry, especially polymer could be made as a good dosimeter in biological fields because of tissue equivalent material. We experimented the radiation response of polymers and attempted to apply it in clinical use. Polymers have the properties of thermoluminescence and thermally stimulated currents which are due to several kinds of charged particles such as dipoles, electronic trapped charges and mobile ions. Several peaks are datected in the thermally stimulated currents in polyethylene under vias field V, by heating from room temperature to $100^{\circ}C$ shortly after irradiation. As V increases, both the peak temperature $T_m$ and the activation energy H decreases, while the peak current $I_m$ increases. We plotted the $T_m-V\;and\;I_m-V$ curves and calculated the electron trap depth with the recombination operative TSC theory and compared the peak TSC with radiation doses.

  • PDF

Thermally Stimulated Currents in Aged XLPE Cable Insulation (열화된 XLPE 케이블의 열지급전류)

  • Kim, Sang-Joon;Lee, Nam-Woo;Cheong, Dong-Won;Ko, In-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.221-223
    • /
    • 1991
  • In order to evaluate degradation of the aged power cables, thin slices(200m) cut from the aged cables were prepared for thermally stimulated current measurements. Throughout the temperature range, 140 to $280^{\circ}C$ the TSC is greater for the aged material, and sharp peak is observed at $158^{\circ}C$ and $210^{\circ}C$.

  • PDF

Characteristics of Thermally Stimulated Measurement in Dipolar Depolarization (쌍국자 분극에 대한 열자격 특성)

  • 권영수;강도열;국상훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.357-363
    • /
    • 1990
  • A thermally stimulated current measurement using a temperature gradient (TG-TSC) has been applied to the study of dipolar depolarization in polymers. It has been clarified that theoretical analysis of TG-TSC in the initial rise region corresponds with the experimental results. We conclude that the experimental results on a cross-linked polyethy-lene (XLPE) film can be explained using the above relation and that the charasteristics obtained from the above theoretical analysis can be used for ascertaining the presence of a constant temperature gradient in a film.

  • PDF

Study on Polarization Properties of BaTiO3by Using Thermally Stimulated Depolarization Current (열자극 탈분극전류 방법에 의한 BaTiO3의 분극 특성 연구)

  • Song, Ho-Jun;Lee, Yong-Ryeol;Park, Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.613-616
    • /
    • 2002
  • The polarization properties of $BaTiO_3$ were investigated by using thermally stimulated depolarization current (TSDC) technique. Two peaks were observed at about 400 K (peak A) and 435 K (peak B) from TSDC spectra obtained from the temperature range of 280-500 K. Peak A shows a sharp decrease of TSDC due to extinction of spontaneous polarization above the phase transition temperature of $BaTiO_3$. The values of activation energy of peak A and peak B were calculated to be 0.70 eV and 0.87 eV respectively. From the results of TSDC measurement with a variation of polarizing electric field strength, we found that saturation of total current of TSDC was started from 3kV/cm. However, the amount of total current of TSDC was not affected by the variation of polarizing time.

A study on thermally stimulatede current in semi-insulating GaAs (반절연성 GaAs에서 열자극 전류에 관한 연구)

  • 배인호;김기홍;김인수;최현태;이철욱;이정열
    • Electrical & Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.383-388
    • /
    • 1994
  • Deep levels in semi-insulating GaAs were observed by thermally stimulated current(TSC) measurement In the temperature ranges of 100-300K Tl(E$\_$c/-0.18eV), T2(E$\_$c/-0.20eV), T3(E$\_$c/-0.31eV), T4(E$\_$c/-0.40eV), and T5(E$\_$c/-O.43eV) traps have been observed. The TI, T2, and T5 traps seem to be related to the V$\_$As/, V$\_$Ga/-complex, and As$\_$Ga/$\^$++/ respectively. T4 trap is considered with respect to V$\_$Ga/-V$\_$As/ complex.

  • PDF

Thermally Stimulated Current Analysis of (Ba, Sr)TiO$_3$ Capacitor ((Ba, Sr)TiO$_3$ 커패시터의 Thermally Stimulated Current분석)

  • Kim, Yong-Ju;Cha, Seon-Yong;Lee, Hui-Cheol;Lee, Gi-Seon;Seo, Gwang-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.329-337
    • /
    • 2001
  • It has been known that the leakage current in the low field region consists of the dielectric relaxation current and intrinsic leakage current, which cause the charge loss in dynamic random access memory (DRAM) storage capacitor using (Ba,Sr)TiO$_{3}$ (BST) thin film. Especially, the dielectric relaxation current should be seriously considered since its magnitude is much larger than that of the intrinsic leakage current in giga-bit DRAM operation voltage (~IY). In this study, thermally stimulated current (TSC) measurement was at first applied to investigate the activation energy of traps and relative evaluation of the density of traps according to process change. And, through comparing TSC to early methods of I-V or I-t measurement and analyzing, we identify the origin of the dielectric relaxation current and investigate the reliability of TSC measurement. First, the polarization condition such as electric field, time, temperature and heating rate was investigated for reliable TSC measurement. From the TSC measurement, the energy level of traps in the BST thin film has been investigated and evaluated to be 0.20($\pm$0.01) eV and 0.45($\pm$0.02) eV. Based on the TSC measurement results before and after rapid thermal annealing (RTA) process, oxygen vacancy is concluded to be the origin of the traps. TSC characteristics with thermal annealing in the MIM BST capacitor have shown the same trends with the current-voltage (I-V) and current-time (I-t) characteristics. This means that the TSC measurement is one of the effective methods to characterize the traps in the BST thin film.

  • PDF

Depolarization Mechanism of Alternating-current-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals Measured using in-situ thermally Stimulated Depolarization Current (TSDC 방법을 이용한 AC 폴링된 PMN-PT 단결정의 디폴링 메커니즘 분석)

  • Lee, Geon-Ju;Kim, Hwang-Pill;Lee, Sang-Goo;Lee, Ho-Yong;Jo, Wook
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.59-62
    • /
    • 2020
  • Currently, increasing attention is being paid to relaxor-based ferroelectric single crystals in photoacoustic images, especially for high-end applications. Among the crystals are (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-100xPT) single crystals located near their morphotropic phase boundary (x = 0.30-0.35) because of their ultrahigh piezoelectric and electromechanical coupling properties. The alternating current poling (ACP) treatment, rather than the conventional direct current poling treatment, has recently been spotlighted due to its effectiveness in enhancing the piezoelectric properties. So far, it has been suggested that the enhanced piezoelectricity originates from either a domain miniaturization to nanodomains or from an electric-field-induced monoclinic symmetry. In this study, we demonstrate by thermally stimulated depolarization current measurements that the effect of ACP is too complex to be explained using a single mechanism and that the proposed electric-field-induced monoclinic symmetry is unlikely to exist.