• Title/Summary/Keyword: Thermally Induced Stress

Search Result 58, Processing Time 0.027 seconds

Stablility Analysis of Underground Cold Storage Openings in Shallow Jointed Rocks (천심도 절리 암반 중에 굴착된 지하 냉장저장 공동의 안정성 해석)

  • 김호영;박연준;한공창;박의섭;선경건
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 1997
  • A pilot plant of underground cold storage for food has been excavated as a R&D program. For the stability assessment of underground cold storage opeinengs in shallow jointed rocks, three kinds of stability problems were analyzed by numerical methods. For the analysis of unstability by rock block movements, DEM was used considering the statistical distribution of rock joints. Concerning thermally induced cracking, FDM was used with thermomechanical stress analysis. Finally, in order to evaluate the joint failure during the thawing process, BE algorithm was applied. Numerical examples applied for the pilot plant show that the possibility of unstable failure of opeings exists but can be avoided with proper rock reinforcements provided.

  • PDF

Optimal Sawcutting Methods for Hydrating Concrete Pavements

  • Jeong, Jin-Hoon;Kim, Sung-Hee;Kim, Nakseok
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.93-101
    • /
    • 2002
  • The details of an approach to account for the factors that have been found to affect the ability and the probability to control cracking due to sawcutting in newly constructed concrete pavements are presented. Several factors such as material strength parameters, method and quality of curing, slab and subbase stiffness, and concrete shrinkage affect the probability of crack initiation. Others are relevant to concrete mixture characteristics that affect development of early aged stresses caused by shrinkage and thermally induced contraction. This paper presents the results of a probabilistic analysis of the factors that affect crack control using sawcut notches. Cost analyses on both conventional and early-entry sawcutting methods are shown to support the results of the probabilistic analysis. From both an operational and cost standpoint, it is evident for the environmental conditions considered that early-entry sawcut methodology holds a significant advantage over conventional methods.

  • PDF

Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect (부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석)

  • Sohn, Chang-Hyun;Ahn, Seong-Tae;Jang, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.

Reduction of Thermally Induced Effects in a Diode-Pumped Nd:YAG Laser by Using Diffused Pump Beams (산란된 여기빔을 이용한 다이오드 여기 Nd:YAG 레이저의 열유도효과 감소)

  • 이성만;김선국;윤미정;이종훈;김현수;남성모;차병헌;이종민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.46-47
    • /
    • 2000
  • 고출력, 고효율, 그리고 고품질의 빔특성을 갖는 DPSSL을 개발하기 위해서는 출력빔을 저하시키는 원인인 비균일한 여기빔 분포에 의한 레이저 결정내의 열렌즈, stress 복굴절 등의 효과를 최소화하여야 한다. 지금까지 열효과를 줄여, 고출력이나 TE $M_{00}$ 모드의 레이저 빔을 얻기위한 방법으로 zigzag 슬랩 디자인$^{1)}$ , VPS 여기 시스템$^{2)}$ , Cusp 형 반사체$^{(3)}$ , 광섬유 결합$^{(4)}$ 등의 방법이 연구되어 왔다. 본 연구에서는 고출력, 고효율, 그리고 고품질의 레이저 빔특성을 동시에 만족하는 레이저를 개발할 목적으로 산란된 여기빔을 이용하는 여기구조를 고안하고 열효과가 감소된 Nd:YAG 레이저 시스템을 최적설계하였다. (중략)략)

  • PDF

A Study on Thermal Stability of Unidirectionally Solidified $Al-CuAl_2$ Eutectic Composite (일방향응고시킨 $Al-CuAl_2$공정복합재료의 열적안정성에 관한 연구)

  • Hong, Young-Hwan;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.399-407
    • /
    • 1990
  • The effect of thermal cycling and isothermal exposure on the high temperature microstructural stability of unidirectionally solidified $Al-CuAl_2$ eutectic composite has been studied. A coarsening procedures of lamellar eutectic structures were initiated at growth fault region because of diffusion through low angle boundary at this region. It was considered that thermally induced residual stresses produced by thermal cycling were high enough to increase the dislocation density in Al-rich matrix phase. However, it was also considered that dislocations generated by these high thermal stresses were annihilated at high temperature by stress relaxation. Consequently, the thermal cycling up to 1440 cycles between 20 and $520^{\circ}C$ did not affect the microstructural stability.

  • PDF

Numerical Study on the Hot Spots of Friction Surface in Disk Brakes (디스크 브레이크 마찰표면의 적열점에 관한 수치적 연구)

  • Kim, Chung-Kyun;Cho, Seung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1692-1696
    • /
    • 2004
  • This paper presents the thermally induced hot spot characteristics of rubbing surface in the friction pad disk brake. During the braking period, the rubbing surface with irregular asperities that are strongly engaged in rough surface, wear, and deformed surface due to a friction heating may produce an irregular distorted geometry of the disk surface. The tribological interactions between the disk and the pads are unstable if the contact stress is severe, in which the irregularity develops the contact pressure distribution, leading eventually to localized contact, high temperature and formation of hot spots. The computed results of contact spots that are simulated using a coupled thermal-mechanical analysis present sinusoidal distortions and localized extrusions of the disk surface, which are strongly related to a hot spot in the practical disk brake.

Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory

  • Chattibi, F.;Benrahou, Kouider Halim;Benachour, Abdelkader;Nedri, K.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.93-110
    • /
    • 2015
  • The thermomechanical bending response of anti-symmetric cross-ply composite plates is investigated by the use of the simple four variable sinusoidal plate theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. The validity of the present theory is demonstrated by comparison with solutions available in the literature. Numerical results are presented to demonstrate the behavior of the system. The influences of aspect ratio, side-to-thickness ratio, thermal expansion coefficients ratio and stacking sequence on the thermally induced response are studied. The present study is relevant to aerospace, chemical process and nuclear engineering structures which may be subjected to intense thermal loads.

Thermomechanical Properties of Functionally Graded $Al-SiC_p$ Composites

  • Song, Dae-Hyun;Park, Yong-Ha;Park, Yong-Ho;Park, Ik-Min;Cho, Kyung-Mox
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.85-86
    • /
    • 2006
  • A theoretical model is applied to the analysis of thermomechanical properties of $Al-SiC_p$ FGMs in this study. Functionally graded $Al-SiC_p$ composites ($Al-SiC_p$ FGMs) consisted with 10 layers gradually changing volume fractions of Al and $SiC_p$ were fabricated using the pressureless infiltration technique. $Al-SiC_p$ FGMs plates of total thickness of 3mm, 5mm and 7mm with fairly uniform distribution and compositional gradient of $SiC_p$ reinforcement in the Al matrix throughout the thickness was successfully fabricated. The curvature of $Al-SiC_p$ FGM plates was measured to check the internal stress distribution predicted via a theoretical model for the analysis of thermo-mechanical deformation. The evolution of curvature and also internal stresses in response to temperature variations could be predicted for the different combinations of geometric thickness of FGM plates. Theoretical prediction of thermally induced stress distribution makes it possible to design FGM structures without any critical failure during the usage of them.

  • PDF

Stress Modeling of the Laser Drilling Process in Carbon Steel (레이저 드릴링을 통한 강판 가공 시 응력 모델링)

  • Lee, Wooram;Kim, Joohan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.857-864
    • /
    • 2013
  • A laser machining process has been applied in many manufacturing fields and it provides an excellent energy control for treating materials. However, a heat effect during laser machining can deteriorate material properties. Specifically, a thermally induced stress can be a problem in laser-machined structures on a metal surface. In this study, temperature and stress on cold-rolled carbon steel sheet machined with laser hole drilling were explored in an experimental approach and a numerical method. Stresses by temperature gradients inside the materials were generated in fast cooling. The stresses were measured by using a hole-drilling method and the material properties of carbon steel (SCP1-S) were obtained in the experiment. It was found that the stress predicted from the numerical analysis was in agreement with the stresses measured by using the hole-drilling method. The analysis can be applied for evaluating structure characteristics machined with a laser.

Analysis of thermal stress through finite element analysis during vertical Bridgman crystal growth of 2 inch sapphire (유한요소해석법을 이용한 2 inch 사파이어 vertical Bridgman 결정성장 공정 열응력 해석)

  • Kim, Jae Hak;Lee, Wook Jin;Park, Yong Ho;Lee, Young Cheol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.231-238
    • /
    • 2015
  • Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. Among the many crystal growth methods, vertical Bridgman process is an excellent commercial method for growing high quality sapphire crystals with c-axis. In this study, the thermally induced stress in Sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model. A vertical Bridgman process of 2-inch Sapphire was considered for the model. The effects of vertical and transverse temperature gradients on the thermal stress during the process were discussed based on the finite element analysis results.