• Title/Summary/Keyword: Thermal-structural analysis

Search Result 1,069, Processing Time 0.028 seconds

A Thermal Stress Analysis of Beams with Out-of-Plane Warping (면외 워핑함수를 고려한 보 구조물의 기계 및 열응력 해석)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • In this paper, a methodology, which is able to predict the thermal stresses accurately yet efficiently, is presented for beam structures via Saint-Venant's principle. In general, higher-order beam theories have been known to be effective for the prediction of thermal stresses. In contrast to this, we propose the method to predict the thermal stresses of beam structures by post-processing the classical beam theory via Saint-Venant's principle. The approach includes an out-of-plane warping displacement to account for the through-the-thickness thermal deformation. With this, one can accurately recover the thermal stresses as compared to the elasticity solutions. In fact, they are identical for the beams made of isotropic materials. The effect of out-of-plane warping is also investigated, it turns out that the effect is negligible in mechanical stress analysis but not in thermal stress analysis.

Probabilistic Fracture Mechanics Analysis of Reactor Vessel for Pressurized Thermal Shock - The Effect of Residual Stress and Fracture Toughness - (가압열충격에 대한 원자로 용기의 확률론적 파괴역학해석 - 잔류응력 및 파괴인성곡선의 영향 -)

  • Jung, Sung-Gyu;Jin, Tae-Eun;Jhung, Myung-Jo;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.987-996
    • /
    • 2003
  • The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability Is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated.

Evaluation of Damage on a Concrete Bridge Considering the Location of the Vehicle Fire (차량 화재 위치를 고려한 콘크리트 교량의 손상 영향 평가)

  • Park, Jang Ho;Kim, Sung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.80-87
    • /
    • 2013
  • Heat transfer analysis and thermal stress analysis for the concrete bridge was performed in order to investigate the damage of the concrete bridge by the fire of the vehicle. Changes in material properties, such as thermal conductivity, specific heat, density, elasticity, caused by temperature rise were considered. Heat transfer analysis and thermal stress analysis were performed according to the various location of the fire by ABAQUS. From the comparison of the numerical results, the degree of structural damage for the concrete bridge was investigated and considerations for the design of a concrete bridge against fire were identified.

Structural Characteristic Analysis of a Centerless Grinding Machine with Concrete Bed (콘크리트 베드를 이용한 무심연삭기의 구조특성 해석)

  • 김석일;성하경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.32-36
    • /
    • 2002
  • This paper presents the structural characteristic analysis of a centerless grinding machine with concrete bed. The centerless grinding machine is composed of grinding wheel head, regulating wheel head, concrete bed, wheel dresser and so on. Especially, the concrete bed is introduced to improve the static, dynamic and thermal characteristics of the centerless grinding machine. The structural analysis model of centerless grinding machine is constructed by the finite element method, and the structural characteristics in the design stage are estimated based on the structural deformation and harmonic response under the various testing conditions related to gravity force and directional farces

  • PDF

Structural Design and Analysis of Measurement Sensor of Automotive Exhaust System (자동차 배기관 시스템 계측 센서의 구조 설계 및 해석)

  • Kim, Sangkee;Lee, Sunhee;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.82-85
    • /
    • 2016
  • In this study, structural design of exhaust gas sensor of automobile was performed. In order to evaluate the structural design of the measurement sensor, the structural analysis was performed by the finite element method. The vibration and thermal stress analysis was carried out at the high temperature condition. Finally, the structural test of sensor system was performed, and used for comparison with the analyzed model. Through the structural analysis and test, it is confirmed that the designed measurement sensor structure is acceptable.

Structural Reliability Analysis of Subsea Tree Tubing Hanger (Sub-sea 트리 튜빙 행어(tubing hanger)의 구조 신뢰성 해석)

  • Kim, Hyunjin;Yang, Youngsoon;Kim, Sunghee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.212-219
    • /
    • 2014
  • As subsea production has been revived up, the demand of subsea equipment has also been increased. Among the equipment, subsea tree plays a major role in safety. The tubing hanger is one of the most important components in subsea tree. In this study structural reliability analysis on dual bore tubing hanger of subsea tree is performed. The target reliability which is introduced in ISO regulation is used for judging whether tubing hanger is safe or not. The considered loads are working pressure, working temperature and suspended tubing weight. Thermal-stress analysis on tubing hanger is performed and kriging model is created based on the results of FEM analysis. According to von Mises criterion, limit state equation can be estimated. Reliability analysis is performed by using level 2 method and the result is verified by that of Monte Carlo Simulation. For finding most probable failure point, enhanced HL-RF method is adopted. Because the reliability of model doesn't reach target reliability, an improvement measure should be considered. Thus, it is suggested to change the material of tubing hanger main body to AISI 4140.

Conceptual Design of Coolant Channel for Sub-scale Combustion Chamber (소형 연소기 냉각 유로 개념 설계)

  • 정용현;조원국;한상엽;류철성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • A numerical heat transfer analysis and the structural analysis were performed for the design of sub-scale combustion chamber's coolant passage. The heat flux through the combustion chamber wall was estimated by 2-D heat transfer analysis of compressible hot gas and the result was applied as a thermal boundary condition of 3-D analysis. The heat flux estimated by the present method agreed well with the experimental correlation and proved to be insensitive to cooling condition. So the same thermal boundary condition was applied for various operating conditions. The maximum temperature of combustion chamber wall was predicted by 3-D analysis for single coolant passage and the result will be used for the development of a regeneratively cooled combustion chamber. Also estimated were the stress distribution and structural safety of coolant passage through the static structural analysis.

Vibration Stability Analysis of Automotive Exhaust Sensor (자동차 배기계 센서 구성품의 진동 안정성 해석)

  • Park, Hyun Bum
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.44-47
    • /
    • 2017
  • This work dealt with vibration stability analysis of automotive exhaust sensor. In this work, structural design and analysis of exhaust gas sensor of automobile system were performed. Firstly, structural design requirement of automobile exhaust system was investigated. After structural design, the structural analysis of the exhaust measurement sensor system were performed usig the finite element analysis method. It was performed that the vibration and thermal stress analysis at the high temperature condition. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis, it was confirmed that the designed measurement sensor structure is safety.

The Effect of Structural Characteristics of Selected Wool Fabrics on Mechanical and Thermal Properties (직물의 구성인자가 보온성에 미치는 영향)

  • Jun, Byung-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • This study was performed to determine the effect of structural characteristics of selected wool fabrics on mechanical and thermal properties. 52 wool fabrics, including 18 plain woven fabrics and 34 twill and satin woven fabrics were used as samples woven with various weft density for the study. Several physical characteristics such as mechanical properties, keeping warmth ratio of wool fabrics were measured. Data analyses including 1) analysis of tactile and thermal comfort sensation were performed. the following were obtained from the results: The main factors affecting keeping warmth ratio were thickness and bulk density. The keeping warmth ratio of samples increased with increasing thickness and decreasing bulk density of samples. In addition, coefficient of friction of the samples increased with keeping warmth ratio of samples. The above results show that wearing sensation and comfort properties of fabrics are changed depending on the end-use, and thus, above results can be used to manufacture of fabrics for specific end-use with high comfort properties.

  • PDF

Boundary Element Analysis of Singular Residual Thermal Stresses in A Fiber-Reinforced Unifirectional Viscoelastic Laminate (섬유가 보강된 단일방향 점탄성 복합재료에 발생하는 특이 잔류 열응력의 경계요소해석)

  • 이상순;박준수
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.181-187
    • /
    • 1996
  • This paper concerns the singular thermal stresses at the interface corner between the elastic fiber and the viscoelastic matrix of a two-dimensional unidirectional laminate model induced during cooling from cure temperature down to room temperature. Time-domain boundary element method is employed to investigate the nature of residual thermal stresses at the interface. Numerical results show that very large stress gradients are present at the interface corner and such stress singularity might lead to local yielding or fiber-matrix debonding.

  • PDF