• Title/Summary/Keyword: Thermal-mechanical performance

Search Result 1,687, Processing Time 0.026 seconds

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

Evaluation of Defects in the Bonded Area of Shoes using an Infrared Thermal Vision Camera

  • Kim, Jae-Yeol;Yang, Dong-Jo;Kim, Chang-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.511-514
    • /
    • 2003
  • The Infrared Camera usually detects only Infrared waves emitted from the light in order to illustrate the temperature distribution. An Infrared diagnosis system can be applied to various fields. But the defect discrimination can be automatic or mechanized in the special shoes total inspection system. This study introduces a method for special shoes nondestructive total inspection. Performance of the proposed method is shown through thermo-Image.

Experimental Study on Heat Transfer Characteristics of Thermosyphon Using Nanofluids (나노유체를 이용한 써모사이폰의 열전달 성능 특성에 관한 실험적 연구)

  • Lee, Moo-Yeon;Cho, Chung-Won;Lee, Ho-Seong;Won, Jong-Phil;Lim, Taek-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1073-1079
    • /
    • 2012
  • This study aims to experimentally investigate the heat transfer characteristics of a thermosyphon using nanofluids. A thermosyphon with three individual pipes, which share the internal volume of the evaporator section, was designed, and its performance was tested for various charge amounts, input powers of the evaporator section's heater, and concentrations of working fluids. The optimized charge amount of the thermosyphon using distilled water was 30%, and the thermal resistance of the thermosyphon with $TiO_2$ nanofluid was 18.1% lower than that with Ag nanofluid. In addition, the heat transfer performance of the thermosyphon with $TiO_2-1%$ was optimized at an input power of 300 W at the evaporator section's heater and a charge amount of 30%.

Rotary Kiln Flame and Heat Transfer Model - Analysis of Thermal Performance according to Fuel (로터리킬른 화염 및 열전달 모형 - 연료에 따른 열 성능 분석 사례)

  • Choi, Donghwan;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • This paper is to suggest a simple flame model for the analysis of an internal flame of rotary kilns and to present the application cases. Reaction rates in the multi combustion stages of the selected solid fuel were calculated considering the reaction rates with the Arrhenius type equations. In addition, primary and secondary air flow arrangement were considered. As a simple application case, the combustion trends according to the different solid fuels were described. Improved operating conditions as related with the fuel characteristics were shown to be important for the stable combustion characteristics and the performance of the reactors as defined by the exit temperature of the solid materials.

Study on the Performance of an ATES Geothermal Heat Pump System and Economic Analysis (ATES 열펌프 시스템 성능 및 경제성 분석에 관한 연구)

  • Oh, Myung-Suk;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2012
  • The aim of this study is to investigate the performance of a heating and cooling system with aquifer thermal energy storage(ATES heat pump system) known as one of the underground thermal energy storage application systems. The ATES system was composed of heat pump unit and ATES, which was installed in a factory building located in Anseoung. The system represented very high heating and cooling performance, and showed nearly constant COP at each heating and cooling season due to the stability of EWT. The economic analysis about an ATES system and a conventional system was also executed. The conventional system adopted an air-conditioner in the summer season and a LNG boiler in the winter season. The payback period of the ATES system was estimated by 6.62 years.

Performance Characteristics Analysis of Combined Cycle Using Regenerative Organic Rankine Cycle and LNG Cold Energy (LNG 냉열과 재생 유기 랭킨 사이클을 이용한 복합 사이클의 성능 특성 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;HAN, CHUL HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.234-241
    • /
    • 2020
  • This paper presents a thermodynamic performance analysis of a combined cycle consisting of regenerative organic Rankine cycle (ORC) and liquefied natural gas (LNG) Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the system performances are analyzed in the aspect of thermodynamics. The effects of the turbine inlet pressure and the working fluid on the system performance such as the mass flow rates, heat transfers at heat exchangers, power productions at turbines, and thermal efficiency are systematically investigated. The results show that the thermodynamic performance of ORC such as net power production and thermal efficiency can be significantly improved by the regenerative ORC and the LNG cold energy.

Study of Cooling Characteristics of 18650 Li-ion Cell Module with Different Types of Phase Change Materials (PCMs) (PCM 종류에 따른 18650 리튬-이온 셀 모듈의 냉각 특성 연구)

  • YU, SIWON;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.622-629
    • /
    • 2020
  • The performance and cost of electric vehicles (EVs) are much influenced by the performance and service life of the Li-ion battery system. In particular, the cell performance and reliability of Li-ion battery packs are highly dependent on their operating temperature. Therefore, a novel battery thermal management is crucial for Li-ion batteries owing to heat dissipation effects on their performance. Among various types of battery thermal management systems (BTMS'), the phase change material (PCM) based BTMS is considered to be a promising cooling system in terms of guaranteeing the performance and reliability of Li-ion batteries. This work is mainly concerned with the basic research on PCM based BTMS. In this paper, a basic experimental study on PCM based battery cooling system was performed. The main purpose of the present study is to present a comparison of two PCM-based cooling systems (n-Eicosane and n-Docosane) of the unit 18650 battery module. To this end, the simplified PCM-based Li-ion battery module with two 18650 batteries was designed and fabricated. The thermal behavior (such as temperature rise of the battery pack) with various discharge rates (c-rate) was mainly investigated and compared for two types of battery systems employing PCM-based cooling. It is considered that the results obtained from this study provide good fundamental data on screening the appropriate PCMs for future research on PCM based BTMS for EV applications.

Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat (저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

Evaluation of Thermal Performances of Various Fan-Shaped Pin-Fin Geometries (다양한 부채꼴 핀휜 형상의 열성능 평가)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.557-570
    • /
    • 2014
  • The heat transfer, pressure loss, and thermal performance in a cooling channel were evaluated for various new fan-shaped pin-fin geometries using three-dimensional Reynolds-averaged Navier-Stokes equations. The turbulence was modeled using the low-Reynolds-number SST turbulence model in the Reynolds number range of 5,000-100,000. The numerical results for the area-averaged Nusselt numbers were validated by comparing them with the experimental data under the same conditions. A parametric study for three types of fan-shaped pin-fin geometries was performed with two parameters, namely, the leading and trailing reduction angles.

Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs

  • Seo, Young-Rok;Kim, Birm-June;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.472-485
    • /
    • 2019
  • When wood plastic composites (WPCs) have been used for a certain period of time, they become waste materials and should be recycled to reduce their environmental impact. Waste WPCs can be transformed into reinforced composites, in which fillers are used to improve their performance. In this study, recycled WPCs were prepared using different proportions of waste WPCs, nanoclay, and glass fiber. The effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of the recycled WPCs were investigated. X-ray diffraction showed that the nanoclay intercalates in the WPCs. Additionally, scanning electron micrographs revealed that the glass fiber is adequately dispersed. According to the analysis of mechanical properties, the simultaneous incorporation of nanoclay and glass fiber improved both tensile and flexural strengths. However, as the amount of fillers increases, their dispersion becomes limited and the tensile and flexural modulus were not further improved. The synergistic effect of nanoclay and glass fiber in recycled WPCs enhanced the thermal stability and crystallinity ($X_c$). Also, the presence of nanoclay improved the water absorption properties. The results suggested that recycled WPCs reinforced with nanoclay and glass fiber improved the deteriorated performance, showing the potential of recycled waste WPCs.