• 제목/요약/키워드: Thermal-mechanical performance

검색결과 1,687건 처리시간 0.022초

가스터빈 기관의 탈설계점 해석 (Off-Design Performance Prediction of a Gas Turbine Engine)

  • 강동진;류제욱;정평석
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1851-1863
    • /
    • 1993
  • A procedure for the prediction of the off-design performance of a gas turbine engine is proposed. The system performance at off-design speed is predicted by coupling the thermodynamic models of a compressor and a turbine. The off-design performance of a compressor is obtained using the stage-stackimg method, while the Ainlay-Mathieson method is used for a turbine. The procedure is applied to a single-shaft gas turbine and its predictability is found satisfactory. The results also show that the net work output increases with the increase of the turbine inlet temperature, while the thermal efficiency is marginal. The maximum thermal efficiency at design point is obtained between the highest pressure ratio and design pressure ratio.

Multiple-Hole Effect on the Performance of a Sparger During Direct Contact Condensation of Steam

  • Seok Cho;Song, Chul-Hwa;Chung, Heung-June;Chun, Se-Young;Chung, Moon-Ki
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.482-491
    • /
    • 2001
  • An experimental study has been carried out to investigate an I-type sparger-performance in view of pressure oscillation and thermal mixing in a pool. Its pitch-to-hole diameter, P/D, varies from 2 to 5. The test conditions are restricted to the condensation oscillation regime. In the present study, two different hole patterns, staggered and parallel types, are employed under various test conditions. The amplitude of the pressure pulse shows a peak for pool temperatures of 45∼85$\^{C}$, which depends on P/D and the steam mass flux. The effect of hole pattern on the pressure load is smaller than that of P/D. The dominant frequency increases with the subcooling temperature of pool water and P/D. A correlation for the dominant frequency is proposed in terms of the pitch-to-hole diameter ratio and other dimensionless thermal hydraulic parameters.

  • PDF

평행류 열교환기의 열.유동 특성에 대한 설계인자의 최적화 (Optimization of Design Factors for Thermal and Flow Characteristics of a Parallel Flow Heat Exchanger)

  • 정길완;이관수
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.640-651
    • /
    • 2000
  • For the heat and fluid flow analyses of a parallel flow heat exchanger, an improved model considering the effect of flat tube with micro-channels is proposed. The effect of flow distribution on the thermal performance of a heat exchanger is numerically investigated. The flow distribution is examined by varying geometrical parameters, i.e., the position of the separators and the inlet/outlet, and the aspect ratio of micro-channels of the heat exchanger. The flow nonuniformities along the paths of the heat exchanger are proposed and observed to evaluate the thermal performance of the heat exchanger. The optimization using ALM method has been accomplished by minimizing the flow nonuniformity. It is found that the heat transfer rate of the optimized model is increased by 6.0% of that of the reference heat exchanger model, and the pressure drop by 0.4%

전산해석을 통한 고압열증기압축기 형상변수에 관한 강건 설계 (Robust Design for Shape Parameters of High Pressure Thermal Vapor Compressor by Numerical Analysis)

  • 박일석
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.931-937
    • /
    • 2008
  • A high motive pressure thermal vapor compressor(TVC) for a commercial multi-effect desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio.

확관 응축부를 갖는 진공관형 태양열 집열기용 히트파이프 성능 비교 연구 (A Comparative Study of Heat Pipes with Enlarged Condenser Section for Evacuated Solar Collectors)

  • 부준홍;정원복;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제22권4호
    • /
    • pp.18-25
    • /
    • 2002
  • For application to medium temperature solar collerctors $(80\sim120^{\circ}C)$, a heat pipe should be designed properly to efficiently transfer heat to a hotter condenser than common applications. Among many wick structure candidates for heat pipes of this type, a slab wick was selected based on promising performance data reported previously. The thermal performance of slab wick heat pipes, screen wick heat pipes and thermosyphons with enlarged condenser section were experimentally investigated for comparison purpose. The heat pipes were 8.0 mm O.D. (evaporator section) and 25.4 mm O.D. (condenser section) made of copper. The experimental data of the heat pipes were analysed in terms of thermal resistance against thermal load and coolant temperature.

특장차량 유압시스템 내 열적 특성 분석 (Experimental Thermal Analysis of Hydraulic System in a Special Vehicle)

  • 최유현;이상호
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.85-91
    • /
    • 2011
  • Experimental analysis has been carried out to investigate thermal characteristics of hydraulic system in special vehicles. Hydraulic system performance is largely influenced by oil temperature, and there are considerable performance decline and malfunctions in the system for high temperature conditions caused by heavy load and continuous operation. Transient oil temperature and pressure variation are analyzed and heat generation rates in the several main system parts are compared for various flow rates. With the start of system operation oil temperature gradually increases, and viscosity deceases by about 70% as temperature increases from $20^{\circ}C$ to $80^{\circ}C$. Operation pressure in the hydraulic system decreases with oil temperature, and its variation rate becomes less steep as oil temperature increases. Heat generation rate in hydraulic pump also depends on the oil temperature, and it reaches maximum near $50^{\circ}C$. These results in this study can be applied to optimal design of efficient hydraulic system in special vehicles.

기상 조건과 축열조 용량에 따른 복합 포물형 집열기(CPC) 시스템의 열적 성능 특성에 관한 연구 (Study on Thermal Performance Characteristics of CPC System Depending on Weather Conditions and Capacity of Heat Storage Tank)

  • 임석규;정영관;김경훈
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.58-66
    • /
    • 2019
  • Static compound parabolic collectors (CPCs) have advantages such as ease for fabrication and lower cost compared with other concentrating collectors. In this study, thermal performance analysis of CPC employing heat storage tank was carried out. The clearness index and capacity of heat storage tank are taken as the main parameters for numerical simulation. The effects of the parameters on the hourly and daily system performances ncluding the useful energy, heat loss, and collector efficiency were numerically investigated. Results showed that the system has a potential for efficient recovery of solar thermal energy.

복합재료 접착체를 가지는 튜브형 접합부의 토크전달능력 예측 (Prediction of the Torque Capacity for Tubular Adhesive Joints with Composite Adherends)

  • 오제훈
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1543-1550
    • /
    • 2006
  • Since the performance of joints usually determines the structural efficiency of composite structures, an extensive knowledge of the behavior of adhesive joints and the related effect on joint strength is essential for design purposes. In this study, the torque capacity of adhesive joints was predicted using the combined thermal and mechanical analyses when the adherend was a composite tube. A finite element analysis was performed to evaluate residual thermal stresses developed in the joint, and mechanical s stresses in the adhesive were calculated including both the nonlinear adhesive behavior and the behavior of composite tubes. Three different joint failure modes were considered to predict joint failure: interfacial failure, adhesive bulk failure, and adherend failure. The influence of the composite adherend stacking angle on the residual thermal stresses was investigated, and how the residual thermal stresses affect the joint strength was also discussed. Finally, the predicted results were compared with experimental results available in literature.

세라믹 모노리스 담체의 열충격 특성에 관한 연구 (A Study on Thermal Shock of Ceramic Monolithic Substrate)

  • 백석흠;박재성;김민건;조석수
    • 대한기계학회논문집A
    • /
    • 제34권2호
    • /
    • pp.129-138
    • /
    • 2010
  • 공업용 세라믹은 자체의 특이한 물리적 특성으로 인하여 극한의 열 및 화학적 환경에서도 적용할 수 있는 우수한 고온 재료이다. 세라믹은 고온에서 저온으로 빠르게 이동되면 열충격을 받는다. 본 연구에서는 열충격에 대한 매개변수로 임계온도차이를 제안한다. 세라믹 부품에 대한 임계온도차이는 부품 크기와 대류열전달계수 등에 의해 영향을 받는다. 부품의 열충격 특성은 비정상 열응력에 의해 평가된다. 비정상 열응력이 파단계수를 초과한다면 열충격 균열이 표면에서 시작된다고 가정할 수 있다. 물에 대한 임계온도차이는 공기에 대한 임계온도차이보다 적다. 본 연구에서 사용된 국내 승용차용 삼원 촉매 담체는 반경 및 축방향 온도차이가 임계온도차이 아래에 존재하므로 충분한 열충격 성능을 가지고 있었다.

Recent Progress in Cathode Materials for Thermal Batteries

  • Ko, Jaehwan;Kang, Seung Ho;Cheong, Hae-Won;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제56권3호
    • /
    • pp.233-255
    • /
    • 2019
  • Thermal batteries are reserve batteries with molten salts as an electrolyte, which activates at high temperature. Due to their excellent reliability, long shelf life, and mechanical robustness, thermal batteries are used in military applications. A high-performance cathode for thermal batteries should be considered in terms of its high capacity, high voltage, and high thermal stability. Research progress on cathode materials from the recent decade is reviewed in this article. The major directions of research were surface modification, compounding of existing materials, fabrication of thin film cathode, and development of new materials. In order to develop a high-performance cathode, a proper combination of these research directions is required while considering mass production and cost.