DOI QR코드

DOI QR Code

Recent Progress in Cathode Materials for Thermal Batteries

  • Received : 2019.03.15
  • Accepted : 2019.04.21
  • Published : 2019.05.31

Abstract

Thermal batteries are reserve batteries with molten salts as an electrolyte, which activates at high temperature. Due to their excellent reliability, long shelf life, and mechanical robustness, thermal batteries are used in military applications. A high-performance cathode for thermal batteries should be considered in terms of its high capacity, high voltage, and high thermal stability. Research progress on cathode materials from the recent decade is reviewed in this article. The major directions of research were surface modification, compounding of existing materials, fabrication of thin film cathode, and development of new materials. In order to develop a high-performance cathode, a proper combination of these research directions is required while considering mass production and cost.

Keywords

References

  1. R. A. Guidotti and P. Masset, "Thermally Activated ("Thermal") Battery Technology Part I: An Overview," J. Power Sources, 161 [2] 1443-49 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.013
  2. P. Masset and R. A. Guidotti, "Thermally Activated ("Thermal") Battery Technology Part II: Molten Salt Electrolytes," J. Power Sources, 164 [1] 397-414 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.080
  3. P. J. Masset and R. A. Guidotti, "Thermally Activated ("Thermal") Battery Technology Part IIIa: $FeS_2$ Cathode Material," J. Power Sources, 177 [2] 595-609 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.017
  4. P. J. Masset and R. A. Guidotti, "Thermally Activated ("Thermal") Battery Technology Part IIIb: Sulfur and Oxide-based Cathode Materials," J. Power Sources, 178 [1] 456-66 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.073
  5. R. A. Guidotti and P. J. Masset, "Thermally Activated ("Thermal") Battery Technology Part IV: Anode Materials," J. Power Sources, 183 [1] 388-98 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.090
  6. S. S. Wang and R. N. Seefurth, "Electrochemical Studies of $FeS_2$ Electrodes in Various Sulfide-Containing Molten Salts," J. Electrochem. Soc., 134 [3] 530-35 (1987). https://doi.org/10.1149/1.2100504
  7. S. H. Chae, S. H. Kang, H. W. Cheong, Y. S. Han, and D. H. Yoon, "Thermal Batteries with Ceramic Felt Separators - Part 1: Wetting, Loading Behavior and Chemical Stability," Ceram. Int., 43 [5] 4015-22 (2017). https://doi.org/10.1016/j.ceramint.2016.11.136
  8. S. H. Kang, S. H. Chae, H. W. Cheong, K. H. Kim, Y. S. Han, S. M. Lee, D. H. Yoon, and J. Yi, "Thermal Batteries with Ceramic Felt Separators - Part 2: Ionic Conductivity, Electrochemical and Mechanical Properties," Ceram. Int., 43 [5] 4023-28 (2017). https://doi.org/10.1016/j.ceramint.2016.12.057
  9. Y. S. Choi, H. R. Yu, and H. W. Cheong, "Electrochemical Properties of a Lithium-Impregnated Metal Foam Anode for Thermal Batteries," J. Power Sources, 276 102-4 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.103
  10. Y. Choi, S. Cho, and Y. S. Lee, "Effect of the Addition of Carbon Black and Carbon Nanotube to $FeS_2$ Cathode on the Electrochemical Performance of Thermal Battery," J. Ind. Eng. Chem., 20 [5] 3584-89 (2014). https://doi.org/10.1016/j.jiec.2013.12.052
  11. J. Ko, I. Y. Kim, H. M. Jung, H. Cheong, and Y. S. Yoon, "Thin Cathode for Thermal Batteries Using a Tape Casting Process," Ceram. Int., 43 [7] 5789-93 (2017). https://doi.org/10.1016/j.ceramint.2017.01.126
  12. I. Oh, J. Cho, K. Kim, J. Ko, H. Cheong, Y. S. Yoon, and H. M. Jung, "Poly(Imide-co-Siloxane) as a Thermo-Stable Binder for Thin Layer Cathode of Thermal Batteries," Energies, 11 [11] 3154 (2018). https://doi.org/10.3390/en11113154
  13. J. Ko, I. Y. Kim, H. Cheong, and Y. S. Yoon, "Organic Binder-free Cathode Using $FeS_2$-MWCNTs Composite for Thermal Batteries," J. Am. Ceram. Soc., 100 [10] 4435-41 (2017). https://doi.org/10.1111/jace.14991
  14. T. Yang, L. Cai, and R. E. White, "Mathematical Modeling of the LiAl/$FeS_2$ High Temperature Battery System," J. Power Sources, 201 322-31 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.006
  15. E. L. Reinholz, S. A. Roberts, C. A. Apblett, J. B. Lechman, and P. R. Schunk, "Composition and Manufacturing Effects on Electrical Conductivity of Li/$FeS_2$ Thermal Battery Cathode," J. Electrochem. Soc., 163 [8] A1723-29 (2016). https://doi.org/10.1149/2.1191608jes
  16. J. Hu, Y. Chu, Q. Tian, J. Wang, Y. Li, Q. Wu, L. Zhao, and Y. Zhu, "Film Cathode for Thermal Batteries Using a Screen-Printing Process," Mater. Lett., 215 296-99 (2018). https://doi.org/10.1016/j.matlet.2017.12.114
  17. S. Xie, Y. Deng, J. Mei, Z. Yang, W. M. Lau, and H. Liu, "Facile Synthesis of $CoS_2$/CNTs Composite and its Exploitation in Thermal Battery Fabrication," Composites, Part B, 93 203-9 (2016). https://doi.org/10.1016/j.compositesb.2016.03.038
  18. S. Xie, Y. Deng, J. Mei, Z. Yang, W. M. Lau, and H. Liu, "Carbon Coated $CoS_2$ Thermal Battery Electrode Material with Enhanced Discharge Performances and Air Stability," Electrochim. Acta, 231 287-93 (2017). https://doi.org/10.1016/j.electacta.2017.02.068
  19. T. Yu, Z. Yu, Y. Cao, H. Liu, X. Liu, Y. Cui, C. Wang, and Y. Cui, "Electrochemical Performances and Air Stability of Fe-deped $CoS_2$ Cathode Materials for Thermal Batteries," Int. J. Electrochem. Sci., 13 7590-97 (2018).
  20. J. Hu, L. Zhao, Y. Chu, Q. Tian, J. Wang, Y. Li, Q. Wu, and Y. Zhu, "Preparation and Electrochemical Properties of a New $Fe_{0.5}Co_{0.5}S_2$ Cathode Material for Thermal Batteries," J. Alloys Compd., 762 109-114 (2018). https://doi.org/10.1016/j.jallcom.2018.05.118
  21. Y. Xie, Z. Liu, H. Ning, H. Huang, and L. Chen, "Suppressing Self-Discharge of Li-B/$CoS_2$ Thermal Batteries by Using a Carbon-Coated $CoS_2$ Cathode," RSC Adv., 8 [13] 7173-78 (2018). https://doi.org/10.1039/C7RA13071F
  22. C. Jin, L. Zhou, L. Fu, J. Zhu, D. Li, and W. Yang, "The Acceleration Intermediate Phase (NiS and $Ni_3S_2$) Evolution by Nanocrystallization in Li/$NiS_2$ Thermal Batteries with High Specific Capacity," J. Power Sources, 352 83-9 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.119
  23. C. Jin, L. Fu, J. Zhu, W. Yang, D. Li, and L. Zhou, "A Hierarchical Carbon Modified Nano-$NiS_2$ Cathode with High Thermal Stability for a High Energy Thermal Battery," J. Mater. Chem. A, 6 [16] 7123-32 (2018). https://doi.org/10.1039/C8TA00346G
  24. J. L. Payne, J. D. Percival, K. Giagloglou, C. J. Crouch, G. M. Carins, R. I. Smith, R. Comrie, R. K. B. Gover, and J. T. S. Irvine, "In-situ Thermal Battery Discharge Using $NiS_2$ as a Cathode Material," ChemElectroChem, 4 [8] 1-9 (2017). https://doi.org/10.1002/celc.201600813
  25. C. Jin, L. Zhou, L. Fu, J. Zhu, and D. Li, "Synthesis and Discharge Performances of $NiCl_2$ by Surface Modification of Carbon Coating as Cathode Material of Thermal Battery," Appl. Surf. Sci., 402 308-13 (2017). https://doi.org/10.1016/j.apsusc.2017.01.034
  26. J. Hu, Y. Chu, Q. Tian, S. Guo, M. Yang, X. Wang, L. Zhao, and Y. Zhu, "Electrochemical Properties of the $NiCl_2$ Cathode with Nickel Foam Substrate for Thermal Batteries," Mater. Lett., 207 198-201 (2017). https://doi.org/10.1016/j.matlet.2017.07.082
  27. W. Liu, H. Liu, S. Bi, L. Cao, and Y. Sun, "Variable-Temperature Preparation and Performance of $NiCl_2$ as a Cathode Material for Thermal Batteries," Sci. China Mater., 60 [3] 251-57 (2017). https://doi.org/10.1007/s40843-016-9003-x
  28. K. Giagloglou, J. L. Payne, C. Crouch, R. K. B. Gover, P. A. Connor, and J. T. S. Irvine, "Transition Metal Chlorides $NiCl_2$, $KNiCl_3$, $Li_6VCl_8$ and $Li_2MnCl_4$ as Alternative Cathode Materials in Primary Li Thermal Batteries," J. Electrochem. Soc., 165 [14] A3510-16 (2018). https://doi.org/10.1149/2.1231814jes
  29. T. Hillel and Y. Ein-Eli, "Copper Vanadate as Promising High Voltage Cathodes for Li Thermal Batteries," J. Power Sources, 229 112-16 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.128
  30. J. Dai, M. Lai, R. LaFollette, and D. Reisner, "Thin Film Copper Vanadium Oxide Electrodes for Thermal Batteries," ECS Trans., 33 [27] 3-9 (2011).
  31. K. Giagloglou, J. L. Payne, C. Crouch, R. K. B. Gover, P. A. Connor, and J. T. S. Irvine, "Zirconium Trisulfide as a Promising Cathode Material for Li Primary Thermal Batteries," J. Electrochem. Soc., 163 [14] A3126-30 (2016). https://doi.org/10.1149/2.1351614jes
  32. K. Giagloglou, J. L. Payne, C. Crouch, R. K. B. Gover, P. A. Connor, and J. T. S. Irvine, "Synthesis and Electrochemical Study of $CoNi_2S_4$ as a Novel Cathode Material in a Primary Li Thermal Battery," J. Electrochem. Soc., 164 [9] A2159-63 (2017). https://doi.org/10.1149/2.1171709jes
  33. X. Zheng, Y. Zhu, Y. Sun, and Q. Jiao, "Hydrothermal Synthesis of $MoS_2$ with Different Morphology and its Performance in Thermal Battery," J. Power Sources, 395 318-27 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.092
  34. K. Hasegawa and S. Noda, "Lithium Ion Batteries Made of Electrodes with 99 wt% Active Materials and 1 wt% Carbon Nanotubes without Binder or Metal Foils," J. Power Sources, 321 155-62 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.130
  35. P. Sehrawat, C. Julien, and S. S. Islam, "Carbon Nanotubes in Li-Ion Batteries: A Review," Mater. Sci. Eng., B, 213 12-40 (2016). https://doi.org/10.1016/j.mseb.2016.06.013
  36. I. Y. Kim, S. Y. Shin, J. H. Ko, K. S. Lee, S. P. Woo, D. K. Kim, and Y. S. Yoon, "Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials," J. Korean Ceram. Soc., 54 [1] 9-22 (2017). https://doi.org/10.4191/kcers.2017.54.1.11
  37. K. S. Lee, S. Y. Shin, and Y. S. Yoon, "$Fe_3O_4$ Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries," J. Korean Ceram. Soc., 53 [3] 376-80 (2016). https://doi.org/10.4191/kcers.2016.53.3.376
  38. J. H. Kim and D. K. Kim, "Conversion-Alloying Anode Materials for Na-Ion Batteries: Recent Progress, Challenges, and Perspective for the Future," J. Korean Ceram. Soc., 55 [4] 307-24 (2018). https://doi.org/10.4191/kcers.2018.55.4.07
  39. T. Sadhasivam, M. J. Park, J. Y. Shin, J. E. Jin, S. C. Kim, M. D. Kurkuri, S. H. Roh, and H. Y. Jung, "High Charge Acceptance though Interface Reaction on Carbon Coated Negative Electrode for Advanced Lead-Carbon Battery System," Electrochim. Acta, 295 367-75 (2019). https://doi.org/10.1016/j.electacta.2018.10.149
  40. J. Yin, N. Lin, W. Zhang, Z. Lin, Z. Zhang, Y. Wang, J. Shi, J. Bao, and H. Lin, "Highly Reversible Lead-Carbon Battery Anode with Lead Grafting on the Carbon Surface," J. Energy Chem., 27 1674-83 (2018). https://doi.org/10.1016/j.jechem.2018.03.002
  41. W. Wang, Y. Liang, Y. Kang, L. Liu, Z. Xu, X. Tian, W. Mai, H. Fu, H. Lv, K. Teng, X. Jiao, and F. Li, "Carbon-Coated $SnO_2$@Carbon Nanofibers Produced by Electrospinning-Electrospraying Method for Anode Materials of Lithium-Ion Batteries," Mater. Chem. Phys., 223 762-70 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.066
  42. H. Akbulut, D. Nalci, A. Guler, S. Duman, and M. O. Guler, "Carbon-Silicon Composite Anode Electrodes Modified with MWCNT for High Energy Battery Applications," Appl. Surf. Sci., 446 222-29 (2018). https://doi.org/10.1016/j.apsusc.2018.01.102
  43. Y. N. Lee, S. P. Woo, Y. S. Yoon, and S. H. Kim, "Significant Improvement in Reversibility of MWCNTs-Sn Compound Composite Electrode: Nanostructure Effect MWCNT-Sn Compound Composite on High Initial Reversible Capacity," J. Alloys Compd., 777 1098-107 (2019). https://doi.org/10.1016/j.jallcom.2018.11.092
  44. X. Yan, Y. Wang, T. Yu, H. Chen, Z. Zhao, and S. Guan, "Polyimide Binder by Combining with Polyimide Separator for Enhancing the Electrochemical Performance of Lithium Ion Batteries," Electrochim. Acta, 216 1-7 (2016). https://doi.org/10.1016/j.electacta.2016.08.065
  45. J. Choi, M. H. Ryou, B. Son, J. Song, J. K. Park, K. Y. Cho, and Y. M. Lee, "Improved High-Temperature Performance of Lithium-Ion Batteries through Use of a Thermally Stable Co-Polyimide-based Cathode Binder," J. Power Sources, 252 138-43 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.015
  46. J. Liu, Q. Zhang, and Y. K. Sun, "Recent Progress of Advanced Binders for Li-S Batteries," J. Power Sources, 396 19-32 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.096
  47. M. Zheng, Y. Wang, J. Reeve, H. Souzandeh, and W. H. Zhong, "A Polymer-Alloy Binder for Structures-Properties Control of Battery Electrode," Energy Storage Mater., 14 149-58 (2018). https://doi.org/10.1016/j.ensm.2018.03.006
  48. G. Hernandez, N. Lago, D. Shanmukaraj, M. Armand, and D. Mecerreyes, "Polyimide-Polyether Binder-Diminishing the Carbon Content in Lithium-Sulfur Batteries," Mater. Today Energy, 6 264-70 (2017). https://doi.org/10.1016/j.mtener.2017.11.001
  49. J. Luis, G. Urbano, J. L. Gomez-Camer, C. Botas, and T. Rojo, "Graphene Oxide-Carbon Nanotubes Aerogels with High Sulfur Loadings Suitable as Binder-free Cathodes for High Performance Lithium-Sulfur Batteries," J. Power Sources, 412 408-15 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.077
  50. L. Guo, H. Sun, C. Qin, W. Li, F. Wang, W. Song, J. Du, F. Zhong, and Y. Ding, "Flexible $Fe_3O_4$ Nanoparticles/N-doped Carbon Nanofibers Hybrid Film as Binder-free Anode Materials for Lithium-Ion Batteries," Appl. Surf. Sci., 459 263-70 (2018). https://doi.org/10.1016/j.apsusc.2018.08.001
  51. Y. Liu, X.Chi, Q. Han, Y. Du, J. Yang, and Y. Liu, "Vertically Self-Standing $C@NiCo_2O_4$ Nanoneedle Arrays as Effective Binder-free Cathode for Rechargeable Na-$O_2$ Batteries," J. Alloys Compd., 772 693-702 (2019). https://doi.org/10.1016/j.jallcom.2018.09.121
  52. J. Nong, P. Xie, A. S. Zhu, M. Z. Rong, and M. Q. Zhang, "Highly Conductive Doped Carbon Framework as Binderfree Cathode for Hybrid Li-$O_2$ Battery," Carbon, 142 177-89 (2019). https://doi.org/10.1016/j.carbon.2018.10.045
  53. B. Li, Q. Xiao, and Y. Luo, "A Modified Synthesis Process of Three-Dimensional Sulfur/Graphene Aerogel as Binder-free Cathode for Lithium Sulfur Batteries," Mater. Des., 153 9-14 (2018). https://doi.org/10.1016/j.matdes.2018.04.078
  54. T. G. Kim, E. Samuel, B. Joshi, C. W. Park, M. W. Kim, M. T. Swihart, W. Y. Yoon, and S. S. Yoon, "Supersonically Sprayed rGO-$Zn_2Sn_4$ Composites as Flexible, Binderfree, Scalable, and High-Capacity Lithium Ion Battery Anodes," J. Alloys Compd., 766 331-40 (2018). https://doi.org/10.1016/j.jallcom.2018.06.231
  55. C. C. Li and Y. W. Wang, "Binder Distributions in Waterbased and Organic-based $LiCoO_2$ Electrode Sheets and their Effects on Cell Performance," J. Electrochem. Soc., 158 A1361-70 (2011). https://doi.org/10.1149/2.107112jes
  56. M. Muller, L. Pfaffmann, S. Jaiser, M. Baunach, V. Trouillet, F. Scheiba, P. Scharfer, W. Schabel, and W. Bauer, "Investigation of Binder Distribution in Graphite Anodes for Lithium-Ion Batteries," J. Power Sources, 340 1-5 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.051
  57. B. Lestriez, "Functions of Polymers in Composite Electrodes of Lithium Ion Batteries," C. R. Chim., 13 [11] 1341-50 (2010). https://doi.org/10.1016/j.crci.2010.01.018
  58. S. L. Chou, Y. Pan, J. Z. Wang, H. K. Liu, and S. X. Dou, "Small Things Mask a Big Difference: Binder Effects on the Performance of Li and Na Batteries," Phys. Chem. Chem. Phys., 16 [38] 20347-59 (2014). https://doi.org/10.1039/C4CP02475C
  59. Z. Zhang, T. Zeng, Y. Lai, M. Jia, and J. Li, "A Comparative Study of Different Binders and Their Effects on Electrochemical Properties of $LiMn_2O_4$ Cathode in Lithium Ion Batteries," J. Power Sources, 247 1-8 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.051
  60. G. Liu, H. Zheng, X. Song, and V. S. Battaglia, "Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance," J. Electrochem. Soc., 159 [3] A214-21 (2012). https://doi.org/10.1149/2.024203jes
  61. S. H. Lee, C. Huang, C. Johnston, and P. S. Grant, "Spray Printing and Optimization of Anodes and Cathodes for High Performance Li-Ion Batteries," Electrochim. Acta, 292 546-57 (2018). https://doi.org/10.1016/j.electacta.2018.09.132
  62. A. F. Leonard and N. Job, "Safe and Green Li-Ion Batteries based on $LiFePO_4$ and $Li_4Ti_5O_{12}$ Sprayed as Aqueous Slurries with Xanthan Gum as Common Binder," Mater. Today Energy, 12 168-78 (2019). https://doi.org/10.1016/j.mtener.2019.01.008
  63. S. D. Kim, J. G. Lee, T. G. Kim, K. Rana, J. Y. Jeong, J. H. Park, S. S. Yoon, and J. H. Ahn, "Additive-free Electrode Fabrication with Reduced Graphene Oxide Using Supersonic Kinetic Spray for Flexible Lithium-Ion Batteries," Carbon, 139 195-204 (2018). https://doi.org/10.1016/j.carbon.2018.06.040
  64. B. Joshi, E. Samuel, T. G. Kim, C. W. Park, Y. I. Kim, M. T. Swihart, W. Y. Yoon, and S. S. Yoon, "Supersonically Spray-Coated Zinc Ferrite/Graphitic-Carbon Nitride Composite as a Stable High-Capacity Anode Material for Lithium-Ion Batteries," J. Alloys Compd., 768 525-34 (2018). https://doi.org/10.1016/j.jallcom.2018.07.027
  65. H. Shi, S. Niu, W. Lv, G. Zhou, C. Zhang, Z. Sun, F. Li, F. Kang, and Q. H. Yang, "Easy Fabrication of Flexible and Multilayer Nanocarbon-based Cathodes with a High Unreal Sulfur Loading by Electrostatic Spraying for Lithium-Sulfur Batteries," Carbon, 138 18-25 (2018). https://doi.org/10.1016/j.carbon.2018.05.077
  66. C. Y. Jung, T. S. Zhao, L. An, L. Zeng, and Z. H. Wei, "Screen Printed Cathode for Non-Aqueous Lithium-Oxygen Batteries," J. Power Sources, 297 174-80 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.089
  67. R. E. Sousa, J. Oliveira, A. Goren, D. Miranda, M. M. Silva, L. Hilliou, C. M. Costa, and S. Lanceros-Mendez, "High Performance Screen Printable Lithium-Ion Battery Cathode Ink based on C-$LiFePO_4$," Electrochim. Acta, 196 92-100 (2016). https://doi.org/10.1016/j.electacta.2016.02.189
  68. A. Goren, J. Mendes, H. M. Rodrigues, R. E. Sousa, J. Oliveira, L. Hilliou, C. M. Costa, M. M. Silva, and S. Lanceros-Mendez, "High Performance Screen-Printed Electrodes Prepared by a Green Solvent Approach for Lithium-Ion Batteries," J. Power Sources, 334 65-77 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.019
  69. K. Y. Kang, Y. G. Lee, D. O. Shin, J. C. Kim, and K. M. Kim, "Performance Improvements of Pouch-Type Flexible Thin-Film Lithium-Ion Batteries by Modifying Sequential Screen Printing Process," Electrochim. Acta, 138 294-301 (2014). https://doi.org/10.1016/j.electacta.2014.06.105
  70. Z. Tehrani, T. Korochkina, S. Govindarajan, D. J. Thomas, J. O'Mahony, J. Kettle, T. C. Claypole, and D. T. Gethin, "Ultra-Thin Flexible Screen Printed Rechargeable Polymer Battery for Wearable Electronic Applications," Org. Electron., 26 386-94 (2015). https://doi.org/10.1016/j.orgel.2015.08.007
  71. B. Bitsch, J. Dittmann, M. Schmitt, P. Scharfer, W. Schabel, and N. Willenbacher, "A Novel Slurry Concept for the Fabrication of Lithium-Ion Battery Electrodes with Beneficial Properties," J. Power Sources, 265 81-90 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.115
  72. A. Ponrouch and M. R. Palacin, "On the Impact of the Slurry Mixing Procedure in the Electrochemical Performance of Composite Electrodes for Li-Ion Batteries: A Case Study for Mesocarbon Microbeads (MCMB) Graphite and $Co_3O_4$," J. Power Sources, 196 9682-88 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.045
  73. K. Y. Cho, Y. I. Kwon, J. R. Youn, and Y. S. Song, "Evaluation of Slurry Characteristics for Rechargeable Lithium-Ion Batteries," Mater. Res. Bull., 48 [8] 2922-26 (2013). https://doi.org/10.1016/j.materresbull.2013.04.026
  74. W. Bauer and D. Notzel, "Rheological Properties and Stability of NMP Based Cathode Slurries for Lithium Ion Batteries," Ceram. Int., 40 [3] 4591-98 (2014). https://doi.org/10.1016/j.ceramint.2013.08.137
  75. K. Okubo, H. Wang, K. Hayashi, M. Inada, N. Enomoto, G. Hasegawa, T. Osawa, and H. Takamura, "A Dense NASICON Sheet Prepared by Tape-Casting and Low Temperature Sintering," Electrochim. Acta, 278 176-81 (2018). https://doi.org/10.1016/j.electacta.2018.05.020
  76. A. Rincon, R. Moreno, A. S. A. Chinelatto, C. F. Gutierrez, E. Rayon, M. D. Salvador, and A. Borrell, "$Al_2O_3$-3YTZP-Graphene Multilayers Produced by Tape Casting and Spark Plasma Sintering," J. Eur. Ceram. Soc., 34 [10] 2427-34 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.011
  77. M. R. Somalu, A. Muchtar, W. R. W. Daud, and N. P. Brandon, "Screen-Printing Inks for the Fabrication of Solid Oxide Fuel Cell Films: A Review," Renewable Sustainable Energy Rev., 75 426-39 (2017). https://doi.org/10.1016/j.rser.2016.11.008
  78. W. Wang, S. Chen, J. Li, and W. Wang, "Fabrication of Catalyst Coated Membrane with Screen Printing Method in a Proton Exchange Membrane Fuel Cell," Int. J. Hydrogen Energy, 40 [13] 4649-58 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.027
  79. E. F. Mine, Y. Ito, Y. Teranishi, M. Sato, and T. Shimizu, "Surface Coating and Texturing on Stainless-Steel Plates to Decrease the Contact Resistance by Using Screen Printing," Int. J. Hydrogen Energy, 42 [31] 20224-29 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.154
  80. D. H. Lee, J. S. Choi, H. Chae, C. H. Chung, and S. M. Cho," Highly Efficient Phosphorescent Polymer OLEDs Fabricated by Screen Printing," Displays, 29 [5] 436-39 (2008). https://doi.org/10.1016/j.displa.2008.02.006
  81. S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, and T. Asaoka, "All-Solid-State Lithium Ion Battery Using Garnet-Type Oxide and $Li_3BO_3$ Solid Electrolytes Fabricated by Screen-Printing," J. Power Sources, 238 53-6 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.073
  82. T. Syrovy, T. Kazda, L. Syrova, J. Vondrak, L. Kubac, and M. Sedlarikova, "Cathode Material for Lithium Ion Accumulators Prepared by Screen Printing for Smart Textile Applications," J. Power Sources, 309 192-201 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.089
  83. M. H. Sayed, E. V. G. Robert, P. J. Dale, and L. Gutay, "$Cu_2SnS_3$ Based Thin Film Solar Cells from Chemical Spray Pyrolysis," Thin Solid Films, 669 436-39 (2019). https://doi.org/10.1016/j.tsf.2018.11.002
  84. Z. Liang, Z. Bi, K. Gao, Y. Fu, P. Guan, X. Feng, Z. Chai, G. Xu, and X. Xu, "Interface Modification via $Al_2O_3$ with Retarded Charge Recombination for Mesoscopic Perovskite Solar Cells Fabricated with Spray Deposition Process in the Air," Appl. Surf. Sci., 463 939-46 (2019). https://doi.org/10.1016/j.apsusc.2018.08.077
  85. K. Y. Bae, M. W. Kim, B. H. Kim, S. H. Cho, S. S. Yoon, and W. Y. Yoon, "Effect of Electrostatic Spray Deposited Nafion Coating on Non-Lithiated $LiV_3O_8$ Cathode in Lithium-Metal Rechargeable Batteries," Solid State Ionics, 331 66-73 (2019). https://doi.org/10.1016/j.ssi.2018.12.020
  86. X. Wu, F. Li, W. Wu, and T. Guo, "Flexible Organic Light Emitting Diodes Based on Double-Layered Graphene/PEDOT:PSS Conductive Film Formed by Spray-Coating," Vacuum, 101 53-6 (2014). https://doi.org/10.1016/j.vacuum.2013.07.034
  87. A. Falco, A. M. Zaidi, P. Lugli, and A. Abdellah, "Spray Deposition of Polyethylenimine Thin Films for the Fabrication of Fully-Sprayed Organic Photodiodes," Org. Electron., 23 186-92 (2015). https://doi.org/10.1016/j.orgel.2015.05.003
  88. T. Bayer, R. Selyanchyn, S. Fujikawa, K. Sasaki, and S. M. Lyth, "Spray-Painted Graphene Oxide Membrane Fuel Cells," J. Membr. Sci., 541 347-57 (2017). https://doi.org/10.1016/j.memsci.2017.07.012
  89. A. B. Tahar, A. Romdhane, N. Lalaoui, N. Reverdy-Bruas, A. L. Goff, M. Holzinger, S. Cosnier, D. Chaussy, and N. Belgacem, "Carbon Nanotube-based Flexible Biocathode for Enzymatic Biofuel Cells by Spray Coating," J. Power Sources, 408 1-6 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.059
  90. Q. Guo, P. Guo, J. Li, H. Yin, J. Liu, F. Xial, D. Shen, and N. Li, "$Fe_3O_4$-CNTs Nanocomposites: Inorganic Dispersant Assisted Hydrothermal Synthesis and Application in Lithium Ion Batteries," J. Solid State Chem., 213 104-9 (2014). https://doi.org/10.1016/j.jssc.2014.02.016
  91. Q. Liu, Q. Jiang, L. Jiang, J. Peng, Y. Gao, Z. Duan, and X. Lu, "Preparation of $SnO_2@rGO$/CNTs/S Composite and Application for Lithium-Sulfur Battery Cathode Material," Appl. Surf. Sci., 462 393-98 (2018). https://doi.org/10.1016/j.apsusc.2018.08.038
  92. M. Kazazi, Z. A. Zafar, M. Delshad, J. Cervenka, and C. Chen, "$TiO_2$/CNT Nanocomposite as an Improved Anode Material for Aqueous Rechargeable Aluminum Batteries," Solid State Ionics, 320 64-9 (2018). https://doi.org/10.1016/j.ssi.2018.02.034
  93. M. Y. Son, J. H. Choi, and Y. C. Kang, "Electrochemical Properties of Bare Nickel Sulfide and Nickel Sulfide-Carbon Composite Prepared by One-Pot Spray Pyrolysis as Anode Materials for Lithium Secondary Batteries," J. Power Sources, 251 480-87 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.093
  94. Y. Yamaguchi, T. Takeuchi, H. Sakaebe, H. Kageyama, H. Senoh, T. Sakai, and K. Tatsumi, "Ab Initio Simulations of Li/Pyrite-$MS_2$ (M=Fe, Ni) Battery Cells," J. Electrochem. Soc., 157 [6] A630-35 (2010). https://doi.org/10.1149/1.3365019
  95. A. A. AbdelHamid, X. Yang, J. Yang, X. Chen, and J. Y. Ying, "Graphene-Wrapped Nickel Sulfide Nanoprisms with Improved Performance for Li-Ion Battery Anodes and Supercapacitors," Nano Energy, 26 425-37 (2016). https://doi.org/10.1016/j.nanoen.2016.05.046
  96. T. Takeuchi, H. Sakaebe, H. Kageyama, T. Sakai, and K. Tatsumi, "Preparation of $NiS_2$ Using Spark-Plasma-Sintering Process and its Electrochemical Properties," J. Electrochem. Soc., 155 [9] A679-84 (2008). https://doi.org/10.1149/1.2953496
  97. S. W. Oh, S. T. Myung, S. M. Oh, K. H. Oh, K. Amine, B. Scrosati, and Y. K. Sun, "Double Carbon Coating of LiFe-$PO_4$ as High Rate Electrode for Rechargeable Lithium Batteries," Adv. Mater., 22 [43] 4842-45 (2010). https://doi.org/10.1002/adma.200904027
  98. X. Zhang, X. Zhang, X. G. Wang, Z. Xie, and Z. Zhou, "$NiFe_2O_4$-CNT Composite: An Efficient Electrocatalyst for Oxygen Evolution Reactions in Li-$O_2$ Batteries Guided by Computations," J. Mater. Chem. A, 4 [24] 9390-93 (2016). https://doi.org/10.1039/C6TA02779B
  99. J. Yang, Y. Ouyang, H. Zhang, H. Xu, Y. Zhang, and Y. Wang, "Novel $Fe_2P$/Graphitized Carbon Yolk/Shell Octahedral for High-Efficiency Hydrogen Production and Lithium Storage," J. Mater. Chem. A, 4 [25] 9923-30 (2016). https://doi.org/10.1039/C6TA03501A
  100. Z. Liu, T. Lu, T. Song, X. Y. Yu, X. W. Lou, and U. Paik, "Structure-Designed Synthesis of $FeS_2@C$ Yolk-Shell Nanoboxes as a High-Performance Anode for Sodium-Ion Batteries," Energy Environ. Sci., 10 [7] 1576-80 (2017). https://doi.org/10.1039/c7ee01100h
  101. Y. Li, Y. S. Hu, M. M. Titirici, L. Chen, and X. Huang, "Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries," Adv. Energy Mater., 6 [18] 1600659 (2016). https://doi.org/10.1002/aenm.201600659
  102. J. Shan, Y. Liu, Y. Su, P. Liu, X. Zhuang, D. Wu, F. Zhang, and X. Feng, "Graphene-Directed Two-Dimensional Porous Carbon Frameworks for High-Performance Lithium-Sulfur Battery Cathodes," J. Mater. Chem. A, 4 [1] 314-20 (2016). https://doi.org/10.1039/C5TA08109B
  103. Y. Sakurai, H. Ohtsuka, and J. Yamaki, "Rechargeable Copper Vanadate Cathode for Lithium Cell," J. Electrochem. Soc., 135 [1] 32-6 (1988). https://doi.org/10.1149/1.2095582
  104. M. Eguchi, A. Komamura, T. Miuru, and T. Kishi, "Lithiation Characteristics of $Cu_5V_2O_{10}$," J. Electrochim. Acta, 41 [6] 857-61 (1996). https://doi.org/10.1016/0013-4686(95)00374-6
  105. F. Gao, J. Shi, H. Liu, S. Qiang, L. Gao, S. Bi, and W. Liu, "A Novel and Safety Lithium Thermal Battery Electrolyte - $Li_7La_3Zr_2O_{12}$ Prepared by Solid State Method," Solid State Ionics, 326 131-35 (2018). https://doi.org/10.1016/j.ssi.2018.09.021

Cited by

  1. S@GO as a High-Performance Cathode Material for Rechargeable Aluminum-Ion Batteries vol.15, pp.6, 2019, https://doi.org/10.1007/s13391-019-00170-7
  2. Elucidating the optical, electronic, and photoelectrochemical properties of p-type copper vanadate (p-Cu5V2O10) photocathodes vol.8, pp.25, 2019, https://doi.org/10.1039/d0ta04250a
  3. Challenges and recent progress in LiNixCoyMn1−x−yO2 (NCM) cathodes for lithium ion batteries vol.58, pp.1, 2021, https://doi.org/10.1007/s43207-020-00098-x
  4. Influence of temperature on performance of CuV2O6 cathode for high voltage thermal battery vol.58, pp.4, 2021, https://doi.org/10.1007/s43207-021-00129-1
  5. Interface optimization and fast ion exchange route construction in CoS2 electrode by decorated with dielectric Al2O3 nanoparticles for high temperature primary lithium vol.511, 2019, https://doi.org/10.1016/j.jpowsour.2021.230424
  6. Increasing interfacial infiltration between cathode materials and solid molten salt for high power thermal batteries vol.45, 2022, https://doi.org/10.1016/j.est.2021.103742