References
- R. A. Guidotti and P. Masset, "Thermally Activated ("Thermal") Battery Technology Part I: An Overview," J. Power Sources, 161 [2] 1443-49 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.013
- P. Masset and R. A. Guidotti, "Thermally Activated ("Thermal") Battery Technology Part II: Molten Salt Electrolytes," J. Power Sources, 164 [1] 397-414 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.080
-
P. J. Masset and R. A. Guidotti, "Thermally Activated ("Thermal") Battery Technology Part IIIa:
$FeS_2$ Cathode Material," J. Power Sources, 177 [2] 595-609 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.017 - P. J. Masset and R. A. Guidotti, "Thermally Activated ("Thermal") Battery Technology Part IIIb: Sulfur and Oxide-based Cathode Materials," J. Power Sources, 178 [1] 456-66 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.073
- R. A. Guidotti and P. J. Masset, "Thermally Activated ("Thermal") Battery Technology Part IV: Anode Materials," J. Power Sources, 183 [1] 388-98 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.090
-
S. S. Wang and R. N. Seefurth, "Electrochemical Studies of
$FeS_2$ Electrodes in Various Sulfide-Containing Molten Salts," J. Electrochem. Soc., 134 [3] 530-35 (1987). https://doi.org/10.1149/1.2100504 - S. H. Chae, S. H. Kang, H. W. Cheong, Y. S. Han, and D. H. Yoon, "Thermal Batteries with Ceramic Felt Separators - Part 1: Wetting, Loading Behavior and Chemical Stability," Ceram. Int., 43 [5] 4015-22 (2017). https://doi.org/10.1016/j.ceramint.2016.11.136
- S. H. Kang, S. H. Chae, H. W. Cheong, K. H. Kim, Y. S. Han, S. M. Lee, D. H. Yoon, and J. Yi, "Thermal Batteries with Ceramic Felt Separators - Part 2: Ionic Conductivity, Electrochemical and Mechanical Properties," Ceram. Int., 43 [5] 4023-28 (2017). https://doi.org/10.1016/j.ceramint.2016.12.057
- Y. S. Choi, H. R. Yu, and H. W. Cheong, "Electrochemical Properties of a Lithium-Impregnated Metal Foam Anode for Thermal Batteries," J. Power Sources, 276 102-4 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.103
-
Y. Choi, S. Cho, and Y. S. Lee, "Effect of the Addition of Carbon Black and Carbon Nanotube to
$FeS_2$ Cathode on the Electrochemical Performance of Thermal Battery," J. Ind. Eng. Chem., 20 [5] 3584-89 (2014). https://doi.org/10.1016/j.jiec.2013.12.052 - J. Ko, I. Y. Kim, H. M. Jung, H. Cheong, and Y. S. Yoon, "Thin Cathode for Thermal Batteries Using a Tape Casting Process," Ceram. Int., 43 [7] 5789-93 (2017). https://doi.org/10.1016/j.ceramint.2017.01.126
- I. Oh, J. Cho, K. Kim, J. Ko, H. Cheong, Y. S. Yoon, and H. M. Jung, "Poly(Imide-co-Siloxane) as a Thermo-Stable Binder for Thin Layer Cathode of Thermal Batteries," Energies, 11 [11] 3154 (2018). https://doi.org/10.3390/en11113154
-
J. Ko, I. Y. Kim, H. Cheong, and Y. S. Yoon, "Organic Binder-free Cathode Using
$FeS_2$ -MWCNTs Composite for Thermal Batteries," J. Am. Ceram. Soc., 100 [10] 4435-41 (2017). https://doi.org/10.1111/jace.14991 -
T. Yang, L. Cai, and R. E. White, "Mathematical Modeling of the LiAl/
$FeS_2$ High Temperature Battery System," J. Power Sources, 201 322-31 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.006 -
E. L. Reinholz, S. A. Roberts, C. A. Apblett, J. B. Lechman, and P. R. Schunk, "Composition and Manufacturing Effects on Electrical Conductivity of Li/
$FeS_2$ Thermal Battery Cathode," J. Electrochem. Soc., 163 [8] A1723-29 (2016). https://doi.org/10.1149/2.1191608jes - J. Hu, Y. Chu, Q. Tian, J. Wang, Y. Li, Q. Wu, L. Zhao, and Y. Zhu, "Film Cathode for Thermal Batteries Using a Screen-Printing Process," Mater. Lett., 215 296-99 (2018). https://doi.org/10.1016/j.matlet.2017.12.114
-
S. Xie, Y. Deng, J. Mei, Z. Yang, W. M. Lau, and H. Liu, "Facile Synthesis of
$CoS_2$ /CNTs Composite and its Exploitation in Thermal Battery Fabrication," Composites, Part B, 93 203-9 (2016). https://doi.org/10.1016/j.compositesb.2016.03.038 -
S. Xie, Y. Deng, J. Mei, Z. Yang, W. M. Lau, and H. Liu, "Carbon Coated
$CoS_2$ Thermal Battery Electrode Material with Enhanced Discharge Performances and Air Stability," Electrochim. Acta, 231 287-93 (2017). https://doi.org/10.1016/j.electacta.2017.02.068 -
T. Yu, Z. Yu, Y. Cao, H. Liu, X. Liu, Y. Cui, C. Wang, and Y. Cui, "Electrochemical Performances and Air Stability of Fe-deped
$CoS_2$ Cathode Materials for Thermal Batteries," Int. J. Electrochem. Sci., 13 7590-97 (2018). -
J. Hu, L. Zhao, Y. Chu, Q. Tian, J. Wang, Y. Li, Q. Wu, and Y. Zhu, "Preparation and Electrochemical Properties of a New
$Fe_{0.5}Co_{0.5}S_2$ Cathode Material for Thermal Batteries," J. Alloys Compd., 762 109-114 (2018). https://doi.org/10.1016/j.jallcom.2018.05.118 -
Y. Xie, Z. Liu, H. Ning, H. Huang, and L. Chen, "Suppressing Self-Discharge of Li-B/
$CoS_2$ Thermal Batteries by Using a Carbon-Coated$CoS_2$ Cathode," RSC Adv., 8 [13] 7173-78 (2018). https://doi.org/10.1039/C7RA13071F -
C. Jin, L. Zhou, L. Fu, J. Zhu, D. Li, and W. Yang, "The Acceleration Intermediate Phase (NiS and
$Ni_3S_2$ ) Evolution by Nanocrystallization in Li/$NiS_2$ Thermal Batteries with High Specific Capacity," J. Power Sources, 352 83-9 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.119 -
C. Jin, L. Fu, J. Zhu, W. Yang, D. Li, and L. Zhou, "A Hierarchical Carbon Modified Nano-
$NiS_2$ Cathode with High Thermal Stability for a High Energy Thermal Battery," J. Mater. Chem. A, 6 [16] 7123-32 (2018). https://doi.org/10.1039/C8TA00346G -
J. L. Payne, J. D. Percival, K. Giagloglou, C. J. Crouch, G. M. Carins, R. I. Smith, R. Comrie, R. K. B. Gover, and J. T. S. Irvine, "In-situ Thermal Battery Discharge Using
$NiS_2$ as a Cathode Material," ChemElectroChem, 4 [8] 1-9 (2017). https://doi.org/10.1002/celc.201600813 -
C. Jin, L. Zhou, L. Fu, J. Zhu, and D. Li, "Synthesis and Discharge Performances of
$NiCl_2$ by Surface Modification of Carbon Coating as Cathode Material of Thermal Battery," Appl. Surf. Sci., 402 308-13 (2017). https://doi.org/10.1016/j.apsusc.2017.01.034 -
J. Hu, Y. Chu, Q. Tian, S. Guo, M. Yang, X. Wang, L. Zhao, and Y. Zhu, "Electrochemical Properties of the
$NiCl_2$ Cathode with Nickel Foam Substrate for Thermal Batteries," Mater. Lett., 207 198-201 (2017). https://doi.org/10.1016/j.matlet.2017.07.082 -
W. Liu, H. Liu, S. Bi, L. Cao, and Y. Sun, "Variable-Temperature Preparation and Performance of
$NiCl_2$ as a Cathode Material for Thermal Batteries," Sci. China Mater., 60 [3] 251-57 (2017). https://doi.org/10.1007/s40843-016-9003-x -
K. Giagloglou, J. L. Payne, C. Crouch, R. K. B. Gover, P. A. Connor, and J. T. S. Irvine, "Transition Metal Chlorides
$NiCl_2$ ,$KNiCl_3$ ,$Li_6VCl_8$ and$Li_2MnCl_4$ as Alternative Cathode Materials in Primary Li Thermal Batteries," J. Electrochem. Soc., 165 [14] A3510-16 (2018). https://doi.org/10.1149/2.1231814jes - T. Hillel and Y. Ein-Eli, "Copper Vanadate as Promising High Voltage Cathodes for Li Thermal Batteries," J. Power Sources, 229 112-16 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.128
- J. Dai, M. Lai, R. LaFollette, and D. Reisner, "Thin Film Copper Vanadium Oxide Electrodes for Thermal Batteries," ECS Trans., 33 [27] 3-9 (2011).
- K. Giagloglou, J. L. Payne, C. Crouch, R. K. B. Gover, P. A. Connor, and J. T. S. Irvine, "Zirconium Trisulfide as a Promising Cathode Material for Li Primary Thermal Batteries," J. Electrochem. Soc., 163 [14] A3126-30 (2016). https://doi.org/10.1149/2.1351614jes
-
K. Giagloglou, J. L. Payne, C. Crouch, R. K. B. Gover, P. A. Connor, and J. T. S. Irvine, "Synthesis and Electrochemical Study of
$CoNi_2S_4$ as a Novel Cathode Material in a Primary Li Thermal Battery," J. Electrochem. Soc., 164 [9] A2159-63 (2017). https://doi.org/10.1149/2.1171709jes -
X. Zheng, Y. Zhu, Y. Sun, and Q. Jiao, "Hydrothermal Synthesis of
$MoS_2$ with Different Morphology and its Performance in Thermal Battery," J. Power Sources, 395 318-27 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.092 - K. Hasegawa and S. Noda, "Lithium Ion Batteries Made of Electrodes with 99 wt% Active Materials and 1 wt% Carbon Nanotubes without Binder or Metal Foils," J. Power Sources, 321 155-62 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.130
- P. Sehrawat, C. Julien, and S. S. Islam, "Carbon Nanotubes in Li-Ion Batteries: A Review," Mater. Sci. Eng., B, 213 12-40 (2016). https://doi.org/10.1016/j.mseb.2016.06.013
- I. Y. Kim, S. Y. Shin, J. H. Ko, K. S. Lee, S. P. Woo, D. K. Kim, and Y. S. Yoon, "Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials," J. Korean Ceram. Soc., 54 [1] 9-22 (2017). https://doi.org/10.4191/kcers.2017.54.1.11
-
K. S. Lee, S. Y. Shin, and Y. S. Yoon, "
$Fe_3O_4$ Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries," J. Korean Ceram. Soc., 53 [3] 376-80 (2016). https://doi.org/10.4191/kcers.2016.53.3.376 - J. H. Kim and D. K. Kim, "Conversion-Alloying Anode Materials for Na-Ion Batteries: Recent Progress, Challenges, and Perspective for the Future," J. Korean Ceram. Soc., 55 [4] 307-24 (2018). https://doi.org/10.4191/kcers.2018.55.4.07
- T. Sadhasivam, M. J. Park, J. Y. Shin, J. E. Jin, S. C. Kim, M. D. Kurkuri, S. H. Roh, and H. Y. Jung, "High Charge Acceptance though Interface Reaction on Carbon Coated Negative Electrode for Advanced Lead-Carbon Battery System," Electrochim. Acta, 295 367-75 (2019). https://doi.org/10.1016/j.electacta.2018.10.149
- J. Yin, N. Lin, W. Zhang, Z. Lin, Z. Zhang, Y. Wang, J. Shi, J. Bao, and H. Lin, "Highly Reversible Lead-Carbon Battery Anode with Lead Grafting on the Carbon Surface," J. Energy Chem., 27 1674-83 (2018). https://doi.org/10.1016/j.jechem.2018.03.002
-
W. Wang, Y. Liang, Y. Kang, L. Liu, Z. Xu, X. Tian, W. Mai, H. Fu, H. Lv, K. Teng, X. Jiao, and F. Li, "Carbon-Coated
$SnO_2$ @Carbon Nanofibers Produced by Electrospinning-Electrospraying Method for Anode Materials of Lithium-Ion Batteries," Mater. Chem. Phys., 223 762-70 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.066 - H. Akbulut, D. Nalci, A. Guler, S. Duman, and M. O. Guler, "Carbon-Silicon Composite Anode Electrodes Modified with MWCNT for High Energy Battery Applications," Appl. Surf. Sci., 446 222-29 (2018). https://doi.org/10.1016/j.apsusc.2018.01.102
- Y. N. Lee, S. P. Woo, Y. S. Yoon, and S. H. Kim, "Significant Improvement in Reversibility of MWCNTs-Sn Compound Composite Electrode: Nanostructure Effect MWCNT-Sn Compound Composite on High Initial Reversible Capacity," J. Alloys Compd., 777 1098-107 (2019). https://doi.org/10.1016/j.jallcom.2018.11.092
- X. Yan, Y. Wang, T. Yu, H. Chen, Z. Zhao, and S. Guan, "Polyimide Binder by Combining with Polyimide Separator for Enhancing the Electrochemical Performance of Lithium Ion Batteries," Electrochim. Acta, 216 1-7 (2016). https://doi.org/10.1016/j.electacta.2016.08.065
- J. Choi, M. H. Ryou, B. Son, J. Song, J. K. Park, K. Y. Cho, and Y. M. Lee, "Improved High-Temperature Performance of Lithium-Ion Batteries through Use of a Thermally Stable Co-Polyimide-based Cathode Binder," J. Power Sources, 252 138-43 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.015
- J. Liu, Q. Zhang, and Y. K. Sun, "Recent Progress of Advanced Binders for Li-S Batteries," J. Power Sources, 396 19-32 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.096
- M. Zheng, Y. Wang, J. Reeve, H. Souzandeh, and W. H. Zhong, "A Polymer-Alloy Binder for Structures-Properties Control of Battery Electrode," Energy Storage Mater., 14 149-58 (2018). https://doi.org/10.1016/j.ensm.2018.03.006
- G. Hernandez, N. Lago, D. Shanmukaraj, M. Armand, and D. Mecerreyes, "Polyimide-Polyether Binder-Diminishing the Carbon Content in Lithium-Sulfur Batteries," Mater. Today Energy, 6 264-70 (2017). https://doi.org/10.1016/j.mtener.2017.11.001
- J. Luis, G. Urbano, J. L. Gomez-Camer, C. Botas, and T. Rojo, "Graphene Oxide-Carbon Nanotubes Aerogels with High Sulfur Loadings Suitable as Binder-free Cathodes for High Performance Lithium-Sulfur Batteries," J. Power Sources, 412 408-15 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.077
-
L. Guo, H. Sun, C. Qin, W. Li, F. Wang, W. Song, J. Du, F. Zhong, and Y. Ding, "Flexible
$Fe_3O_4$ Nanoparticles/N-doped Carbon Nanofibers Hybrid Film as Binder-free Anode Materials for Lithium-Ion Batteries," Appl. Surf. Sci., 459 263-70 (2018). https://doi.org/10.1016/j.apsusc.2018.08.001 -
Y. Liu, X.Chi, Q. Han, Y. Du, J. Yang, and Y. Liu, "Vertically Self-Standing
$C@NiCo_2O_4$ Nanoneedle Arrays as Effective Binder-free Cathode for Rechargeable Na-$O_2$ Batteries," J. Alloys Compd., 772 693-702 (2019). https://doi.org/10.1016/j.jallcom.2018.09.121 -
J. Nong, P. Xie, A. S. Zhu, M. Z. Rong, and M. Q. Zhang, "Highly Conductive Doped Carbon Framework as Binderfree Cathode for Hybrid Li-
$O_2$ Battery," Carbon, 142 177-89 (2019). https://doi.org/10.1016/j.carbon.2018.10.045 - B. Li, Q. Xiao, and Y. Luo, "A Modified Synthesis Process of Three-Dimensional Sulfur/Graphene Aerogel as Binder-free Cathode for Lithium Sulfur Batteries," Mater. Des., 153 9-14 (2018). https://doi.org/10.1016/j.matdes.2018.04.078
-
T. G. Kim, E. Samuel, B. Joshi, C. W. Park, M. W. Kim, M. T. Swihart, W. Y. Yoon, and S. S. Yoon, "Supersonically Sprayed rGO-
$Zn_2Sn_4$ Composites as Flexible, Binderfree, Scalable, and High-Capacity Lithium Ion Battery Anodes," J. Alloys Compd., 766 331-40 (2018). https://doi.org/10.1016/j.jallcom.2018.06.231 -
C. C. Li and Y. W. Wang, "Binder Distributions in Waterbased and Organic-based
$LiCoO_2$ Electrode Sheets and their Effects on Cell Performance," J. Electrochem. Soc., 158 A1361-70 (2011). https://doi.org/10.1149/2.107112jes - M. Muller, L. Pfaffmann, S. Jaiser, M. Baunach, V. Trouillet, F. Scheiba, P. Scharfer, W. Schabel, and W. Bauer, "Investigation of Binder Distribution in Graphite Anodes for Lithium-Ion Batteries," J. Power Sources, 340 1-5 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.051
- B. Lestriez, "Functions of Polymers in Composite Electrodes of Lithium Ion Batteries," C. R. Chim., 13 [11] 1341-50 (2010). https://doi.org/10.1016/j.crci.2010.01.018
- S. L. Chou, Y. Pan, J. Z. Wang, H. K. Liu, and S. X. Dou, "Small Things Mask a Big Difference: Binder Effects on the Performance of Li and Na Batteries," Phys. Chem. Chem. Phys., 16 [38] 20347-59 (2014). https://doi.org/10.1039/C4CP02475C
-
Z. Zhang, T. Zeng, Y. Lai, M. Jia, and J. Li, "A Comparative Study of Different Binders and Their Effects on Electrochemical Properties of
$LiMn_2O_4$ Cathode in Lithium Ion Batteries," J. Power Sources, 247 1-8 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.051 - G. Liu, H. Zheng, X. Song, and V. S. Battaglia, "Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance," J. Electrochem. Soc., 159 [3] A214-21 (2012). https://doi.org/10.1149/2.024203jes
- S. H. Lee, C. Huang, C. Johnston, and P. S. Grant, "Spray Printing and Optimization of Anodes and Cathodes for High Performance Li-Ion Batteries," Electrochim. Acta, 292 546-57 (2018). https://doi.org/10.1016/j.electacta.2018.09.132
-
A. F. Leonard and N. Job, "Safe and Green Li-Ion Batteries based on
$LiFePO_4$ and$Li_4Ti_5O_{12}$ Sprayed as Aqueous Slurries with Xanthan Gum as Common Binder," Mater. Today Energy, 12 168-78 (2019). https://doi.org/10.1016/j.mtener.2019.01.008 - S. D. Kim, J. G. Lee, T. G. Kim, K. Rana, J. Y. Jeong, J. H. Park, S. S. Yoon, and J. H. Ahn, "Additive-free Electrode Fabrication with Reduced Graphene Oxide Using Supersonic Kinetic Spray for Flexible Lithium-Ion Batteries," Carbon, 139 195-204 (2018). https://doi.org/10.1016/j.carbon.2018.06.040
- B. Joshi, E. Samuel, T. G. Kim, C. W. Park, Y. I. Kim, M. T. Swihart, W. Y. Yoon, and S. S. Yoon, "Supersonically Spray-Coated Zinc Ferrite/Graphitic-Carbon Nitride Composite as a Stable High-Capacity Anode Material for Lithium-Ion Batteries," J. Alloys Compd., 768 525-34 (2018). https://doi.org/10.1016/j.jallcom.2018.07.027
- H. Shi, S. Niu, W. Lv, G. Zhou, C. Zhang, Z. Sun, F. Li, F. Kang, and Q. H. Yang, "Easy Fabrication of Flexible and Multilayer Nanocarbon-based Cathodes with a High Unreal Sulfur Loading by Electrostatic Spraying for Lithium-Sulfur Batteries," Carbon, 138 18-25 (2018). https://doi.org/10.1016/j.carbon.2018.05.077
- C. Y. Jung, T. S. Zhao, L. An, L. Zeng, and Z. H. Wei, "Screen Printed Cathode for Non-Aqueous Lithium-Oxygen Batteries," J. Power Sources, 297 174-80 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.089
-
R. E. Sousa, J. Oliveira, A. Goren, D. Miranda, M. M. Silva, L. Hilliou, C. M. Costa, and S. Lanceros-Mendez, "High Performance Screen Printable Lithium-Ion Battery Cathode Ink based on C-
$LiFePO_4$ ," Electrochim. Acta, 196 92-100 (2016). https://doi.org/10.1016/j.electacta.2016.02.189 - A. Goren, J. Mendes, H. M. Rodrigues, R. E. Sousa, J. Oliveira, L. Hilliou, C. M. Costa, M. M. Silva, and S. Lanceros-Mendez, "High Performance Screen-Printed Electrodes Prepared by a Green Solvent Approach for Lithium-Ion Batteries," J. Power Sources, 334 65-77 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.019
- K. Y. Kang, Y. G. Lee, D. O. Shin, J. C. Kim, and K. M. Kim, "Performance Improvements of Pouch-Type Flexible Thin-Film Lithium-Ion Batteries by Modifying Sequential Screen Printing Process," Electrochim. Acta, 138 294-301 (2014). https://doi.org/10.1016/j.electacta.2014.06.105
- Z. Tehrani, T. Korochkina, S. Govindarajan, D. J. Thomas, J. O'Mahony, J. Kettle, T. C. Claypole, and D. T. Gethin, "Ultra-Thin Flexible Screen Printed Rechargeable Polymer Battery for Wearable Electronic Applications," Org. Electron., 26 386-94 (2015). https://doi.org/10.1016/j.orgel.2015.08.007
- B. Bitsch, J. Dittmann, M. Schmitt, P. Scharfer, W. Schabel, and N. Willenbacher, "A Novel Slurry Concept for the Fabrication of Lithium-Ion Battery Electrodes with Beneficial Properties," J. Power Sources, 265 81-90 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.115
-
A. Ponrouch and M. R. Palacin, "On the Impact of the Slurry Mixing Procedure in the Electrochemical Performance of Composite Electrodes for Li-Ion Batteries: A Case Study for Mesocarbon Microbeads (MCMB) Graphite and
$Co_3O_4$ ," J. Power Sources, 196 9682-88 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.045 - K. Y. Cho, Y. I. Kwon, J. R. Youn, and Y. S. Song, "Evaluation of Slurry Characteristics for Rechargeable Lithium-Ion Batteries," Mater. Res. Bull., 48 [8] 2922-26 (2013). https://doi.org/10.1016/j.materresbull.2013.04.026
- W. Bauer and D. Notzel, "Rheological Properties and Stability of NMP Based Cathode Slurries for Lithium Ion Batteries," Ceram. Int., 40 [3] 4591-98 (2014). https://doi.org/10.1016/j.ceramint.2013.08.137
- K. Okubo, H. Wang, K. Hayashi, M. Inada, N. Enomoto, G. Hasegawa, T. Osawa, and H. Takamura, "A Dense NASICON Sheet Prepared by Tape-Casting and Low Temperature Sintering," Electrochim. Acta, 278 176-81 (2018). https://doi.org/10.1016/j.electacta.2018.05.020
-
A. Rincon, R. Moreno, A. S. A. Chinelatto, C. F. Gutierrez, E. Rayon, M. D. Salvador, and A. Borrell, "
$Al_2O_3$ -3YTZP-Graphene Multilayers Produced by Tape Casting and Spark Plasma Sintering," J. Eur. Ceram. Soc., 34 [10] 2427-34 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.011 - M. R. Somalu, A. Muchtar, W. R. W. Daud, and N. P. Brandon, "Screen-Printing Inks for the Fabrication of Solid Oxide Fuel Cell Films: A Review," Renewable Sustainable Energy Rev., 75 426-39 (2017). https://doi.org/10.1016/j.rser.2016.11.008
- W. Wang, S. Chen, J. Li, and W. Wang, "Fabrication of Catalyst Coated Membrane with Screen Printing Method in a Proton Exchange Membrane Fuel Cell," Int. J. Hydrogen Energy, 40 [13] 4649-58 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.027
- E. F. Mine, Y. Ito, Y. Teranishi, M. Sato, and T. Shimizu, "Surface Coating and Texturing on Stainless-Steel Plates to Decrease the Contact Resistance by Using Screen Printing," Int. J. Hydrogen Energy, 42 [31] 20224-29 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.154
- D. H. Lee, J. S. Choi, H. Chae, C. H. Chung, and S. M. Cho," Highly Efficient Phosphorescent Polymer OLEDs Fabricated by Screen Printing," Displays, 29 [5] 436-39 (2008). https://doi.org/10.1016/j.displa.2008.02.006
-
S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, and T. Asaoka, "All-Solid-State Lithium Ion Battery Using Garnet-Type Oxide and
$Li_3BO_3$ Solid Electrolytes Fabricated by Screen-Printing," J. Power Sources, 238 53-6 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.073 - T. Syrovy, T. Kazda, L. Syrova, J. Vondrak, L. Kubac, and M. Sedlarikova, "Cathode Material for Lithium Ion Accumulators Prepared by Screen Printing for Smart Textile Applications," J. Power Sources, 309 192-201 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.089
-
M. H. Sayed, E. V. G. Robert, P. J. Dale, and L. Gutay, "
$Cu_2SnS_3$ Based Thin Film Solar Cells from Chemical Spray Pyrolysis," Thin Solid Films, 669 436-39 (2019). https://doi.org/10.1016/j.tsf.2018.11.002 -
Z. Liang, Z. Bi, K. Gao, Y. Fu, P. Guan, X. Feng, Z. Chai, G. Xu, and X. Xu, "Interface Modification via
$Al_2O_3$ with Retarded Charge Recombination for Mesoscopic Perovskite Solar Cells Fabricated with Spray Deposition Process in the Air," Appl. Surf. Sci., 463 939-46 (2019). https://doi.org/10.1016/j.apsusc.2018.08.077 -
K. Y. Bae, M. W. Kim, B. H. Kim, S. H. Cho, S. S. Yoon, and W. Y. Yoon, "Effect of Electrostatic Spray Deposited Nafion Coating on Non-Lithiated
$LiV_3O_8$ Cathode in Lithium-Metal Rechargeable Batteries," Solid State Ionics, 331 66-73 (2019). https://doi.org/10.1016/j.ssi.2018.12.020 - X. Wu, F. Li, W. Wu, and T. Guo, "Flexible Organic Light Emitting Diodes Based on Double-Layered Graphene/PEDOT:PSS Conductive Film Formed by Spray-Coating," Vacuum, 101 53-6 (2014). https://doi.org/10.1016/j.vacuum.2013.07.034
- A. Falco, A. M. Zaidi, P. Lugli, and A. Abdellah, "Spray Deposition of Polyethylenimine Thin Films for the Fabrication of Fully-Sprayed Organic Photodiodes," Org. Electron., 23 186-92 (2015). https://doi.org/10.1016/j.orgel.2015.05.003
- T. Bayer, R. Selyanchyn, S. Fujikawa, K. Sasaki, and S. M. Lyth, "Spray-Painted Graphene Oxide Membrane Fuel Cells," J. Membr. Sci., 541 347-57 (2017). https://doi.org/10.1016/j.memsci.2017.07.012
- A. B. Tahar, A. Romdhane, N. Lalaoui, N. Reverdy-Bruas, A. L. Goff, M. Holzinger, S. Cosnier, D. Chaussy, and N. Belgacem, "Carbon Nanotube-based Flexible Biocathode for Enzymatic Biofuel Cells by Spray Coating," J. Power Sources, 408 1-6 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.059
-
Q. Guo, P. Guo, J. Li, H. Yin, J. Liu, F. Xial, D. Shen, and N. Li, "
$Fe_3O_4$ -CNTs Nanocomposites: Inorganic Dispersant Assisted Hydrothermal Synthesis and Application in Lithium Ion Batteries," J. Solid State Chem., 213 104-9 (2014). https://doi.org/10.1016/j.jssc.2014.02.016 -
Q. Liu, Q. Jiang, L. Jiang, J. Peng, Y. Gao, Z. Duan, and X. Lu, "Preparation of
$SnO_2@rGO$ /CNTs/S Composite and Application for Lithium-Sulfur Battery Cathode Material," Appl. Surf. Sci., 462 393-98 (2018). https://doi.org/10.1016/j.apsusc.2018.08.038 -
M. Kazazi, Z. A. Zafar, M. Delshad, J. Cervenka, and C. Chen, "
$TiO_2$ /CNT Nanocomposite as an Improved Anode Material for Aqueous Rechargeable Aluminum Batteries," Solid State Ionics, 320 64-9 (2018). https://doi.org/10.1016/j.ssi.2018.02.034 - M. Y. Son, J. H. Choi, and Y. C. Kang, "Electrochemical Properties of Bare Nickel Sulfide and Nickel Sulfide-Carbon Composite Prepared by One-Pot Spray Pyrolysis as Anode Materials for Lithium Secondary Batteries," J. Power Sources, 251 480-87 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.093
-
Y. Yamaguchi, T. Takeuchi, H. Sakaebe, H. Kageyama, H. Senoh, T. Sakai, and K. Tatsumi, "Ab Initio Simulations of Li/Pyrite-
$MS_2$ (M=Fe, Ni) Battery Cells," J. Electrochem. Soc., 157 [6] A630-35 (2010). https://doi.org/10.1149/1.3365019 - A. A. AbdelHamid, X. Yang, J. Yang, X. Chen, and J. Y. Ying, "Graphene-Wrapped Nickel Sulfide Nanoprisms with Improved Performance for Li-Ion Battery Anodes and Supercapacitors," Nano Energy, 26 425-37 (2016). https://doi.org/10.1016/j.nanoen.2016.05.046
-
T. Takeuchi, H. Sakaebe, H. Kageyama, T. Sakai, and K. Tatsumi, "Preparation of
$NiS_2$ Using Spark-Plasma-Sintering Process and its Electrochemical Properties," J. Electrochem. Soc., 155 [9] A679-84 (2008). https://doi.org/10.1149/1.2953496 -
S. W. Oh, S. T. Myung, S. M. Oh, K. H. Oh, K. Amine, B. Scrosati, and Y. K. Sun, "Double Carbon Coating of LiFe-
$PO_4$ as High Rate Electrode for Rechargeable Lithium Batteries," Adv. Mater., 22 [43] 4842-45 (2010). https://doi.org/10.1002/adma.200904027 -
X. Zhang, X. Zhang, X. G. Wang, Z. Xie, and Z. Zhou, "
$NiFe_2O_4$ -CNT Composite: An Efficient Electrocatalyst for Oxygen Evolution Reactions in Li-$O_2$ Batteries Guided by Computations," J. Mater. Chem. A, 4 [24] 9390-93 (2016). https://doi.org/10.1039/C6TA02779B -
J. Yang, Y. Ouyang, H. Zhang, H. Xu, Y. Zhang, and Y. Wang, "Novel
$Fe_2P$ /Graphitized Carbon Yolk/Shell Octahedral for High-Efficiency Hydrogen Production and Lithium Storage," J. Mater. Chem. A, 4 [25] 9923-30 (2016). https://doi.org/10.1039/C6TA03501A -
Z. Liu, T. Lu, T. Song, X. Y. Yu, X. W. Lou, and U. Paik, "Structure-Designed Synthesis of
$FeS_2@C$ Yolk-Shell Nanoboxes as a High-Performance Anode for Sodium-Ion Batteries," Energy Environ. Sci., 10 [7] 1576-80 (2017). https://doi.org/10.1039/c7ee01100h - Y. Li, Y. S. Hu, M. M. Titirici, L. Chen, and X. Huang, "Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries," Adv. Energy Mater., 6 [18] 1600659 (2016). https://doi.org/10.1002/aenm.201600659
- J. Shan, Y. Liu, Y. Su, P. Liu, X. Zhuang, D. Wu, F. Zhang, and X. Feng, "Graphene-Directed Two-Dimensional Porous Carbon Frameworks for High-Performance Lithium-Sulfur Battery Cathodes," J. Mater. Chem. A, 4 [1] 314-20 (2016). https://doi.org/10.1039/C5TA08109B
- Y. Sakurai, H. Ohtsuka, and J. Yamaki, "Rechargeable Copper Vanadate Cathode for Lithium Cell," J. Electrochem. Soc., 135 [1] 32-6 (1988). https://doi.org/10.1149/1.2095582
-
M. Eguchi, A. Komamura, T. Miuru, and T. Kishi, "Lithiation Characteristics of
$Cu_5V_2O_{10}$ ," J. Electrochim. Acta, 41 [6] 857-61 (1996). https://doi.org/10.1016/0013-4686(95)00374-6 -
F. Gao, J. Shi, H. Liu, S. Qiang, L. Gao, S. Bi, and W. Liu, "A Novel and Safety Lithium Thermal Battery Electrolyte -
$Li_7La_3Zr_2O_{12}$ Prepared by Solid State Method," Solid State Ionics, 326 131-35 (2018). https://doi.org/10.1016/j.ssi.2018.09.021
Cited by
- S@GO as a High-Performance Cathode Material for Rechargeable Aluminum-Ion Batteries vol.15, pp.6, 2019, https://doi.org/10.1007/s13391-019-00170-7
- Elucidating the optical, electronic, and photoelectrochemical properties of p-type copper vanadate (p-Cu5V2O10) photocathodes vol.8, pp.25, 2019, https://doi.org/10.1039/d0ta04250a
- Challenges and recent progress in LiNixCoyMn1−x−yO2 (NCM) cathodes for lithium ion batteries vol.58, pp.1, 2021, https://doi.org/10.1007/s43207-020-00098-x
- Influence of temperature on performance of CuV2O6 cathode for high voltage thermal battery vol.58, pp.4, 2021, https://doi.org/10.1007/s43207-021-00129-1
- Interface optimization and fast ion exchange route construction in CoS2 electrode by decorated with dielectric Al2O3 nanoparticles for high temperature primary lithium vol.511, 2019, https://doi.org/10.1016/j.jpowsour.2021.230424
- Increasing interfacial infiltration between cathode materials and solid molten salt for high power thermal batteries vol.45, 2022, https://doi.org/10.1016/j.est.2021.103742