• Title/Summary/Keyword: Thermal-mechanical performance

Search Result 1,687, Processing Time 0.027 seconds

Performance Comparison on the Condenser Shapes of Direct Contact Heat Pipe using CFD (전산유체역학을 이용한 직접 접촉식 히트파이프의 응축부 형상에 따른 성능비교)

  • Ko, Jo-Han;Kang, Kyung-Mun;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.203-208
    • /
    • 2008
  • The purpose of this study is to compare the different shapes of condenser of the direct contact heat transfer from the heat pipe condenser to the receiving water using CFD. The heat transfer from the working fluid of the heat pipe to receiving fluid flows through the manifolder is one of the important part in evacuated solar collector system. The retrenchment of the thermal resistance between the heat pipe and the manifolder could increase the thermal performances of the whole system. Recently, direct heat transfer from the heat pipe condenser wall to the receiving water was suggested and accompanied experiments were achieved. This experiment shows the better performances of the direct contact heat transfer analogically. Preceding calculations are carried out for the performance comparison: mesh dependence test, discretization method test and equation model test. with these preceding tests, 4 different shapes of condenser are compared and each case were set up for the same heat flux at the condenser wall. The calculation result shows that the efficiency of the extended surface condenser shape is 10% higher then the that of the others.

  • PDF

Thermal-Structural Coupled Field Analysis of the Circumferential Pressing Type Brake Disc (원주가압형 브레이크 디스크의 열-구조 연성해석)

  • Kim, Hyeong-Hoon;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-74
    • /
    • 2008
  • The heat generated by the brake system of vehicles results in reduction of friction force on the brake surface and vibration during a braking. To solve these problems, extensive research for the brake shape has been conducted such as drilling cooling holes on the brake disc, accommodating ventilated holes and etc. In this study, we suggest the circumferential pressing type brake disc in order to improve its cooling performance. In order to compare the cooling-down efficiency between the conventional side-pressing type and the circumferential-pressing type, we adopted the FMVSS 105-77 as thermal analysis conditions and This newly proposed concept has been verified using Thermal-structure Coupled Field Analysis along with comparative analysis with the existing ventilated disk.

Performance Analysis of Regenerative Gas Turbine System with Afterfogging (압축기 출구 물분사가 있는 재생 가스터빈 시스템의 성능해석)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.448-455
    • /
    • 2009
  • A performance analysis of the regenerative gas turbine system with afterfogging is carried out. Because of the high temperature at the outlet of air compressor, afterfogging has a potential of improved recuperation of exhaust heat than inlet fogging. Thermodynamic analysis model of the gas turbine system is developed by using an ideal gas assumption. Using the model, the effects of pressure ratio, water injection ratio, and ambient temperature are investigated parametrically on thermal efficiency and specific power of the cycle. The dependency of pressure ratio giving peak thermal efficiency is also investigated. The results of numerical computation for the typical cases show that the regenerative gas turbine system with afterfogging can make a notable enhancement of thermal efficiency and specific power. In addition, the peak thermal efficiency is shown to decrease almost linearly with ambient temperature.

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC (HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구)

  • Yoon, Seong Hyun;Park, Jun Yong;Son, Deok Young;Choi, Yunho;Park, Kyungseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.979-988
    • /
    • 2014
  • Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.

NUMERICAL STUDY FOR THE FULL-SCALE ANALYSIS OF PLATE-TYPE HEAT EXCHANGER USING ONE-DIMENSIONAL FLOW NETWORK MODEL and ε-NTU METHOD (판형 열교환기 Full-scale 해석을 위한 1차원 유동 네트워크 모델 및 ε-NTU 모델의 수치적 연구)

  • Kim, Minsung;Min, June Kee;Ha, Man Yeong
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2014
  • Since a typical plate heat exchanger is made up of a huge number of unitary cells, it may be impossible to predict the aero-thermal performance of the full scale heat exchanger through three-dimensional numerical simulation due to the enormous amount of computing resources and time required. In the present study, a simple flow-network model using the friction factor correlation and a thermal-network model based on the effectiveness-number of transfer units (${\varepsilon}$-NTU) method has been developed. The complicated flow pattern inside the cross-corrugated heat exchanger has been modeled into flow and thermal networks. Using this model, the heat transfer between neighboring streams can be considered, and the pressure drop and the heat transfer rate of full-scale heat exchanger matrix are calculated. In the calculation, the aero-thermal performance of each unitary cell of the heat exchanger matrix was evaluated using correlations of the Fanning friction factor f and the Nusselt number Nu, which were calculated by unitary-cell CFD model.

In-Situ Measurement of Chiller Performance and Thermal Storage Density of an Ice Thermal Storage System (빙축열 시스템 냉동기 성능 및 축열밀도 현장측정 기법연구)

  • Shin Younggy;Yang Hooncheul;Tae Choon-Seob;Cho Soo;Kim Youngil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1204-1209
    • /
    • 2005
  • In-situ measurement was made to evaluate chiller performance and thermal storage density of an ice thermal storage system. The system belonged to a big hotel and the measurement was conducted during late October. Owing to very small cooling load, the data logging was possible for a single thermal storage cycle. However, operation history of the chiller showed a relatively good spectrum of data for performance evaluation. COP and thermal storage density were calculated. The COP at full load was about 4.07, which was lower than $4.8\~6.4$ of new chillers. The measured storage density was about $10.9RT-h/m^3\;(=152MJ/m^3)$, which also was lower than a criterion of normal performance $(above\;13.0RT-h/m^3\;or\;181MJ/m^3)$. The study result provides technical basis for quantitative ESCO business scenario.

Prediction Modeling on Effective Thermal Conductivity of Porous Insulation in Thermal Protection System (열방어구조의 다공성 단열재 유효 열전도율 예측 모델링)

  • Hwang, Kyung-Min;Kim, Yong-Ha;Kim, Myung-Jun;Lee, Hee-Soo;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.163-172
    • /
    • 2017
  • Porous insulation have been frequently used in a number of industries by minimizing thermal insulation space because of excellent performance of their thermal insulation. This paper devices an effective thermal conductivity prediction model. First of all, we perform literature survey on traditional effective thermal conductivity prediction models and compare each other model with heat transfer experimental results. Furthermore this research defines advanced effective thermal conductivity prediction models model based on heat transfer experimental results, the Zehner-Schlunder model. Finally we verify that the newly defined effective thermal conductivity prediction model has better performance prediction than other models. Finally, this research performs a transient heat transfer analysis of thermal protection system with a porous insulation using the finite element method and confirms validity of the effective thermal conductivity prediction model.

Effects of Ambient Temperature on the Thermal Characteristics of Photovoltaic Modules (대기온도에 따른 태양전지 모듈의 열적 특성에 관한 연구)

  • Kim, Jong-Pil;Jeon, Chung-Hwan;Chang, Young-June
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.48-52
    • /
    • 2008
  • The photovoltaic modules are affected by heat. The hotter the PV module, the lower the power output, then the life time will be short. If the cell temperature rises above a certain limit the encapsulating materials can be damaged, and this will degrade the performance of the PV module. This paper presents that the PV module temperature can be estimated by using thermal analysis programs, and demonstrates the thermal characteristics of the PV module.

  • PDF

Performance Evaluation of a Piezostack Single-stage Valve at High Temperatures (고온 환경에서의 압전작동기를 이용한 1단 밸브의 성능 평가)

  • Han, Chulhee;Kim, Wan Ho;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.168-174
    • /
    • 2017
  • In this work, a piezostack single-stage valve (PSSV) system is proposed and its control performance is experimentally evaluated at high temperature up to $150^{\circ}C$. In order to achieve this goal, a PSSV system is designed and operating principle and mechanical dimensions are discussed. A displacement amplifier and an adjust bolt are used to generate target displacement and to compensate thermal expansion. Then, an experimental apparatus is constructed to evaluate control performance of the PSSV system. The experimental apparatus consists of a heat chamber, a hydraulic circuit, a pneumatic circuit, pneumatic-hydraulic cylinders, thermal insulator, electronic devices, sensors, data acquisition (DAQ) board and a voltage amplifier. The flow rate and displacement control performance of the valve system are evaluated via experiment. The experimental results are evaluated and discussed at different temperatures and frequencies showing the controlled flow rate and spool displacement.

Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution (3.5% NaCl에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Al- Zn 코팅 강재의 내 식 성능 평가에 관한 연구)

  • Jannat, Adnin Raihana;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.17-18
    • /
    • 2021
  • In the present study, Al-Zn coating was deposited by Arc thermal (AT) and plasma arc thermal (PAT) spray processes, and their corrosion characteristics were studied in 3.5% NaCl through electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and mechanical tests. The bond adhesion result showed that plasma arc sprayed coating had a higher value attributed to compact, dense, and less porous coating compared to arc thermal spray coating which contains defects/pores and uneven morphology as revealed by scanning electron microscope analysis. Electrochemical results revealed that the plasma arc sprayed coating had a high polarization resistance at early stage of immersion, suggesting its excellent corrosion protection performance.

  • PDF