• Title/Summary/Keyword: Thermal-degradation

Search Result 1,120, Processing Time 0.025 seconds

Small Punch Test for the Evaluation of Thermal Aging Embrittlement of CF8 Duplex Stainless Steel

  • Cheon, Jin-Sik;Kim, In-Sup;Jang, Jae-Gyoo;Kim, Joon-Gu
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.79-84
    • /
    • 1996
  • Small punch test was performed on CF8 duplex stainless steel aged at 370 and 400$^{\circ}C$ up to 5,000 h to evaluate the degree of the thermal aging embrittlement. At room temperature, the SP load-displacement curve was in a similar shape to those of ferritic steels and had a good reproducibility in spite of two-phase structure. The aging heat treatment resulted in a slight increase of the yield strength. As test temperature was lowered, the SP load showed a sudden drop followed by serrations before the SP specimen was fractured, resulting from the cracking of ferrite phase. The extent of thermal embrittlement was assessed in terms of the SP energy. Aging treatment at higher temperature led to a larger shift in the transition temperature and the corresponding change in the fracture mode. The main cause of the degradation was the embrittlement of ferrite phase. Additionally the phase boundary separation profoundly contributed to the degradation of the specimen aged at 400$^{\circ}C$.

  • PDF

Novel control scheme for the absence of the thermoelectric(TEC) of infrared detector in an Uncooled thermal system (비냉각 열상시스템에서의 적외선 검출기의 열전소자(TEC) 부재에 대한 효율적인 제어기법)

  • Kim, Yong-Jin;Seo, Jae-Gil;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2335-2340
    • /
    • 2012
  • The detector is an uncooled detector system that functions inside the thermoelectric cooler (TEC) equipped with features instead of the cooler. The function of the thermoelectric device to control the temperature of the detector based on a function of temperature to prevent degradation of image quality to perform the role, the latest technology trend by removing the thermoelectric device size, cost a lot of effort to reduce has been studied. In this paper, It would be proposed of the actual test result using real chamber environment of for the best TECless algorithm as to minimize the degradation of image quality and obtain the low price of the uncooled detector.

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

Effect of interface bonding strength on the recovery force of SMA reinforced polymer matrix smart composites (형상기억합금 선재가 삽입된 폴리머기지 능동복합재료의 회복력에 미치는 계면 접합강도의 영향)

  • 김희연;김경섭;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.18-21
    • /
    • 2003
  • The effect of interface bonding strength on the recovery force of SMA wire reinforced polymer matrix composites was investigated by pullout test. Firstly, the recovery forces and transformation temperatures of various prestrained SMA wires were measured and 5% prestrained SMA wires were prepared for the reinforcements of composites. EPDM incorporated with 20vol% silicon carbide particles(SiCp) of 6, 12, $60{mutextrm{m}}$ size were used as matrix. Pullout test results showed that the interface bonding strength increased when the SiCp size decreased due to the increase of elastic modulus of matrix. Cyclic test of composites was performed through control of DC current at the constant displacement mode. The abrupt decrease of recovery force during cycle test at high current was occurred by thermal degradation of matrix. This was in good agreement with temperature related in the thermal degradation of matrix. The hysteresis of recovery force with respect to the temperature was compared between wire and composite and the hysterisis of composites was smaller than the wire due to less thermal conduction.

  • PDF

Inter-lamina Shear Strength of MWNT-reinforced Thin-Ply CFRP under LEO Space Environment

  • Moon, Jin Bum;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • In this paper, the inter-lamina shear strength (ILSS) of multi-wall carbon nanotube (MWNT) reinforced carbon fiber reinforced plastics (CFRP) and thin-ply composites were verified under low earth orbit (LEO) space environment. CFRP, MWNT reinforced CFRP, thin-ply CFRP and MWNT reinforced thin-ply CFRP were tested after aging by using accelerated ground simulation equipment. The used ground simulation equipment can simulate high vacuum ($2.5{\times}10^{-6}torr$), atomic oxygen (AO, $9.15{\times}10^{14}atoms/cm^2{\cdot}s$), ultraviolet light (UV, 200 nm wave length) and thermal cycling ($-70{\sim}100^{\circ}C$) simultaneously. The duration of aging experiment was twenty hours, which is an equivalent duration to that of STS-4 space shuttle condition. After the aging experiment, ILSS were measured at room temperature ($27^{\circ}C$), high temperature ($100^{\circ}C$) and low temperature ($-100^{\circ}C$) to verify the effect of operation temperature. The MWNT and thin-ply shows good improvement of ILSS at ground condition especially with the thin-ply. And after LEO exposure large degradation of ILSS was observed at MWNT added composite due to the thermal cycle. And the degradation rate was much higher under the high temperature condition. But, at the low temperature condition, the ILSS was largely recovered due to the matrix toughening effect.

Oxidation and Isomerization of Lycopene under Thermal Treatment and Light Irradiation in Food Processing

  • John Shi;Ying Wu;Mike Bryan;Maguer, Le Marc
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.179-183
    • /
    • 2002
  • Lycopene as a natural antioxidant may provide protection against a broad range of epithelial cancers and chronic diseases. Lycopene concentrate extracted from tomatoes can be used as functional food. Lycopene would undergo degradation via isomerization and oxidation under different processing conditions, which impact its bioactivity and reduce the fuuctionality for health benefits. Heat and light induce lycopene oxidation and isomerization of all-trans form to cis form. The effects of thermal treatment and light irradiation on the stability of lycopene were determined. Results have shown that lycopene stability depends on the extent of oxidation and isomerization. Cir-isomers are less stable than trans-isomers. The level of cis-isomers increased as treatment time increased but only for a short period during the beginning of the treatment. The major effect of thermal treatment and light irradiation was a significant decrease in the total lycopene content. A true assessment of health benefits of lycopene concentrate depends on the lycopene content and the composition of all trans-isomers and cia-isomers.

Antioxidant Activity of Lignan Compounds Extracted from Roasted Sesame Oil on the Oxidation of Sunflower Oil

  • Lee, Jin-Young;Kim, Moon-Jung;Choe, Eun-Ok
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.981-987
    • /
    • 2007
  • Effects of lignan compounds (sesamol, sesamin, and sesamolin) extracted from roasted sesame oil on the autoxidation at $60^{\circ}C$ for 7 days and thermal oxidation at $180^{\circ}C$ for 10 hr of sunflower oil were studied by determining conjugated dienoic acid (CDA) contents, p-anisidine values (PAV), and fatty acid composition. Contents of lignan compounds during the oxidations were also monitored. ${\alpha}$-Tocopherol was used as a reference antioxidant. Addition of lignan compounds decreased CDA contents and PAY of the oils during oxidation at $60^{\circ}C$ or heating at $180^{\circ}C$, which indicated that sesame oil lignans lowered the autoxidation and thermal oxidation of sunflower oil. Sesamol was the most effective in decreasing CDA formation and hydroperoxide decomposition in the auto- and thermo-oxidation of oil, and its antioxidant activity was significantly higher than that of ${\alpha}$-tocopherol. Sesamol, sesamin, and sesamolin added to sunflower oil were degraded during the oxidations of oils, with the fastest degradation of sesamol. Degradation of sesamin and sesamolin during the oxidations of the oil were lower than that of ${\alpha}$-tocopherol. The results strongly indicate that the oxidative stability of sunflower oil can be improved by the addition of sesamol, sesamin, or sesamolin extracted from roasted sesame oil.

Non-isothermal TGA Study on Thermal Degradation Kinetics of ACM Rubber Composites (비등온 TGA를 이용한 ACM 고무복합재료의 열분해 거동 연구)

  • Ahn, WonSool;Lee, Hyung Seok
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.161-166
    • /
    • 2013
  • Thermal degradation behavior of chlorine cure-site ACM and carboxylic cure-site ACM rubbers was studied by non-isothermal TGA thermal analysis. Carboxylic cure-site ACM rubber exhibited comparatively more thermally stable than chlorine cure-site ACM, showing higher peak temperature, at which maximum reaction rate occurred. Activation energies from Kissinger method were calculated as 118.6 kJ/mol for the chlorine cure-site ACM and 105.5 kJ/mol for the carboxylic cure-site ACM, showing similar values from Flynn-Wall-Ozawa analysis over the conversion range of 0.1~0.2. From the analysis of the reaction order change, both samples seemed thermally decomposed through the multiple reaction mechanism as is the common rubber materials.

Study on The Thermal Properties of Poly(methyl methacrylate) and Poly($\alpha$-methylstyrene-co-acrylonitrile) Mix tures (Poly(methyl methacrylate)와 Poly($\alpha$-methylstyrene-co-acrylonitrile) 혼합물의 열적특성에 관한 연구)

  • Moon, Deog-Ju;Kim, Byung-Chul;Kim, Dong-Keun;Seul, Soo-Duk;Sohn, Jin-Eon
    • Elastomers and Composites
    • /
    • v.23 no.4
    • /
    • pp.289-298
    • /
    • 1988
  • The thermal degradation of poly(methyl methacrylate)(PMMA) and poly($\alpha$-methylstyrene-co-acrylonitrile)(SAN) mixtures were carried out using the thermogravimetry(TG) and differential scanning calorimetry(DSC) in the stream of nitrogen and air with 50 ml/min at the various heating rate from 4 to $20^{\circ}C/min$ and temperature from 20 to $500^{\circ}C$. The value of activation energies of thermal degradation determined by TG and DSC in the various PMMA/SAN mixtures were 34-54 kcal/mol in the stream of nitrogen. The value of activation energy of SAN 60% mixture were appeared high in comparison with addition rule. PMMA/SAN mixtures by the analysis of infrared spectrophotometer were decomposed by main chain scission in the stream of nitrogen.

  • PDF

Mechanical and Thermal Properties Changes of Nano Semiconducting Materials due to Addition of Carbon Nanotubes (탄소나노튜브를 첨가한 나노 반도전층 재료의 기계적/열적 특성 변화 연구)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Shin, Dong-Hoon;Choi, Yu-Jin;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.28-29
    • /
    • 2006
  • To improve Mechanical and Thermal Properties of semiconducting materials in power cable, we have investigated those of semiconducting materials showed by changing the content of carbon black and Carbon Nanotube. Density were measured by EW-200SG. High temperature, heat degradation initiation temperature, and heat weight loss were measured by TGA (Thermogravimetric Analysis). The dimension of measurement temperature was $0[^{\circ}C]$ J to $700[^{\circ}C]$, and rising temperature was $10[^{\circ}C/min]$. Heat degradation initiation temperature from the TGA results was decreased according to increasing the content of Carbon Nanotube. That is, heat stabilities of EVA containing the weak VA (vinyl acetate) against heat was measured the lowest. From the results of the experiment applied in this study, it is evident that a small amount of Carbon nanotube additives significantly improved the Mechanical and Thermal Properties of semiconducting materials.

  • PDF