• Title/Summary/Keyword: Thermal-Mixing Analysis

Search Result 226, Processing Time 0.028 seconds

Design and analysis of RIF scheme to improve the CFD efficiency of rod-type PWR core

  • Chen, Guangliang;Qian, Hao;Li, Lei;Yu, Yang;Zhang, Zhijian;Tian, Zhaofei;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3171-3181
    • /
    • 2021
  • This research serves to advance the development of engineering computational fluid dynamics (CFD) computing efficiency for the analysis of pressurized water reactor (PWR) core using rod-type fuel assemblies with mixing vanes (one kind of typical PWR core). In this research, a CFD scheme based on the reconstruction of the initial fine flow field (RIF CFD scheme) is proposed and analyzed. The RIF scheme is based on the quantitative regulation of flow velocities in the rod-type PWR core and the principle that the CFD computing efficiency can be improved greatly by a perfect initialization. In this paper, it is discovered that the RIF scheme can significantly improve the computing efficiency of the CFD computation for the rod-type PWR core. Furthermore, the RIF scheme also can reduce the computing resources needed for effective data storage of the large fluid domain in a rod-type PWR core. Moreover, a flow-ranking RIF CFD scheme is also designed based on the ranking of the flow rate, which enhances the utilization of the flow field with a closed flow rate to reconstruct the fine flow field. The flow-ranking RIF CFD scheme also proved to be very effective in improving the CFD efficiency for the rod-type PWR core.

Quantitative Analysis of the Thermal Front in the Mid -eastern Coastal Area of the Yellow Sea (황해 중부 연안 수온전선역의 정량적 해석)

  • Choi, Hyun-Yong;Lee, Sang-Ho;Oh, Im-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • The hydrographic data collected at three different times July, 1994, May, 1995 and June, 1996 around Taean peninsula in the mid-Yellow Sea off Korea, well known for the well-defined surface thermal fronts in summer, were analyzed. In the vertically well-mixed area where water depths varied from 15 m depth to 60 m depth, the temperature difference in the water column was less than $1^{\circ}C$. The temperature observed in the vertically well-mixed area was reversely related with the water depths and the coldest surface water was always observed over the deep channel with the depth of more than 50m, which developed southwestward off the promontory of Taean peninsula, irrespective of the observation period. The strengths of surface thermal front observed in June were much stronger than those in July, even though the surface temperature of stratified area were nearly the same as in July. These observed features could be explained as follows: A major physical process for the formation of the surface thermal front is the vertical mixing of water column but the detailed thermal structure in the study area depend on the physical parameters such as the water depth in the vertically well-mixed side and the vertical thermal structure in the stratified side.

  • PDF

Thermal Properties of Corn-Starch Filled Biodegradable Polymer Bio-Composites (옥수수 전분을 충전제로 첨가한 생분해성 고분자 복합재료의 열적성질)

  • Kim, Hee-Soo;Yang, Han-Seung;Kim, Hyun-Joong;Lee, Young-Kyu;Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.29-38
    • /
    • 2004
  • In this study, we investigated the thermal properties of corn-starch filled polybutylene succinate-adipate (PBS-AD) bio-composites. Thermal analysis (TA) is used to describe the analytical method for measuring the chemical property and weight loss of composite materials as a function of temperature. The thermal stability of corn-starch was lower than that of pure PBS-AD. As corn-starch loading increased, the thermal stability and degradation temperature of the bio-composites decreased and the ash content increased. It can be seen that the degree of compatibility and interfacial adhesion of the bio-composites decreased because of the increasing mixing ratio of the corn-starch. As the content of corn-starch increased, there was no significant change in the glass transition temperature (Tg) and the melting temperature (Tm) for the bio-composites. The storage modulus (E') and loss modulus (E") of the corn-starch flour filled PBS-AD bio-composites were higher than those of PBS-AD, because of the incorporation of corn-starch increased the stiffness of the bio-composites. At higher temperatures, the decreased storage modulus (E') of bio-composites was due to the increased polymer chain mobility of the matrix polymer. From these results, we can expect that corn-starch has potential as a reinforcing filler for bio-composites. Furthermore, we recommend using a coupling agent to improve the interfacial adhesion between corn-starch and biodegradable polymer.

Preparation and Oxygen Permeability of True-IPN's based on Silicone Rubber and Polystyrene (실리콘 고무와 폴리스틸렌을 이용한 True-IPNs의 제조 및 산소투과 특성)

  • Kim, Jun-Hyun;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.205-212
    • /
    • 2000
  • The true-lPN's based on silicone rubber(SR)rrubbery polymer) and polystyrenc(PS)(glass polymer) were prepared by using the sequential IP!\' method_ The characteristic of permeability of oxygen/nitrogen was investigated with the control of the amount of PSOO-70 wt%) in the true-lPN, As a results of fTlR and N1Vm. the SRIPS membrane was synthesised successfully with the IPN synthetic method, Thermal analysis resulls indicated that the degree of mixing of IPN increased with increase of the amount of PS in the IPN. Regarding the characteristic of gas permeability, the membrane showed a trend of decrease in oxygen permeability as the PS content increased, The oxygen permeability of membrane having 50 wt% of PS. however, increased momentarily, Selectivity, meanwhile, increased slightly as the contents of I'S increased. However, the maximum value of oxygen selectivity, which is 20.6% enhanced Value, was obtained with the membrane containing 50 wt% of PS. This can be explained that the behavior of lPN, i.e. mutual assistance, is pronounced in the membrane having 50 wt% of PS.

  • PDF

Formation of Non-equilibrium Cu-Ta-Mo Alloy Powders by Mechanical Alloying (기계적 합금화법에 의한 비평형 Cu-Ta-Mo계 합금분말의 제조)

  • 이충효;이상진
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.314-319
    • /
    • 1999
  • The solid state reaction by mechanical alloying(MA) generally proceeds by lowering the free energy as the result of a chemical reaction at the interface between the two adjacent layers. However, Lee et $al.^{1-5)}$ reported that a mixture of Cu and Ta, the combination of which is characterized by a positive heat of mixing of +2kJ/mol, could be amorphized by mechanical alloying. This implies that there exists an up-hill process to raise the free energy of a mixture of pure Cu and la to that of an amorphous phase. It is our aim to investigate to what extent the MA is capable of producing a non-equilibrium phase with increasing the heat of mixing. The system chosen was the ternary $Cu_{30}Ta_{ 70-x}Mo_ x$ (x=35, 10). The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K $\alpha$ radiation, thermal analysis, electron diffraction and TEM micrographs. In the case of x=35, where pure Cu powders were mixed with equal amount of pure Ta and Mo powders, we revealed the formation of bcc solid solution after 150 h milling but its gradual decomposition by releasing fcc-Cu when milling time exceeded 200 h. However, an amorphous phase was clearly formed when the Mo content was lowered to x=10. It is believed that the amorphization of ternary $Cu_{30}Ta_{60}Mo_{10}$ powders is essentially identical to the solid state amorphization process in binary $Cu_{30}Ta_{70}$ powders.

  • PDF

Reactive compatibilization of liquid crystalline polymer/ethylene-acrylic acid ionomer blends (액정 고분자/에틸렌-아크릴산 이오노머 블렌드의 반응상용화에 관한 연구)

  • Cruz, Heidy;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3653-3659
    • /
    • 2015
  • This paper describes the reactive compatibilization of blends of a wholly aromatic thermotropic copolyester liquid crystalline polymer (TLCP) with random copolymers of ethylene and acrylic acid (EAA) and their salts. Blends were prepared by melt mixing in an intensive batch mixer, and the formation of a graft copolymer due to acidolysis between the TLCP and the acrylic acid group of the ionomer was evaluated. Chemical reaction was assessed by torque measurement during melt mixing and by thermal analysis and morphological observation. The Na-salt of the EAA ionomers was especially effective at promoting a grafting reaction. The extent of reaction depended not only on the cation, but also composition of the ionomer and reaction time. The product of the grafting reaction between the TLCP and a sodium-neutralized ionomer proved to be an effective compatibilizer for TLCP and EAA ionomers.

Analysis Study on Fire Performance with Internal Anchored Concrete Filled Steel Tube Columns According to Percent of Steel-Fibers (강섬유 콘크리트 혼입율에 따른 내부앵커형 콘크리트 충전기둥 내화성능에 관한 해석적 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Concrete filled steel tube system has two major advantages. First, the confinement effect of steel tube improves the compressive strength of concrete. Second, the load capacity and deformation capacity of members are improved because concrete restrains local buckling of steel tube. It does, however, involve workability problem of using stud bolts or anchor bolts to provide composite effect for larger cross-sections. While the ribs inside the columns are desirable in terms of compressive behavior, they cause the deterioration in load capacity upon in-plane deformation resulting from thermal deformation. Since the ribs are directly connected with the concrete, the deformation of the ribs accelerates concrete cracking. Thus, it is required to improve the toughness of the concrete to resist the deformation of the ribs. Welding built-up tubular square columns can secure safety in terms of fire resistance if the problem are solved. This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. In order to evaluate fire resistance performance, loaded heating test was conducted with 8 specimens. The behavior and thermal deformation capacity of the specimens were analyzed for major variables including load ratio. The reliability of heat transfer and thermal stress analysis model was verified through the comparison of the results between the test and previous study.

The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of PP to Produce Fuel-oil (폴리프로필렌 수지 이용 연료유 생성을 위한 열분해 반응에서 제올라이트계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Oh, Se-Hui
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.442-448
    • /
    • 2012
  • The effects of zeolite-type catalysts addition on the thermal decomposition of the PP resin have been studied in a thermal analyzer, a Pyrolyser GC-mass, and a small batch reactor. The zeolite type catalysts tested were natural zeolite, used FCC catalyst, and ZSM-5. As the results of TGA experiments, the pyrolysis starting temperature for PP varied in the range of $330{\sim}360^{\circ}C$ according to the heating rate. Addition of the zeolite type catalysts in the PP resin increased the pyrolysis rate in the order of used FCC catalyst> natural zeolite> ZSM-5 > PP resin. Adding the used FCC catalyst in the PP reduced most effectively the pyrolysis finishing temperature. In the PY-G.C. mass experiments, addition of zeolite type catalysts decreased the molecular weight of pyrolyzed product. In the batch system experiments, the mixing of used FCC catalyst enhanced best the initial yield of fuel oil, but the final yield of fuel oil was 2% higher in the case of mixing of natural zeolite. Also in the carbon number analysis, used FCC catalyst was the most useful one in this experiments for fuel oil.

Fabrication of Porous W by Heat Treatment of Pore Forming Agent of PMMA and WO3 Powder Compacts (기공형성제 PMMA와 WO3 분말 성형체의 열처리를 이용한 W 다공체 제조)

  • Jeon, Ki Cheol;Kim, Young Do;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.129-133
    • /
    • 2015
  • Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and $WO_3$ powder compacts. The PMMA sizes of 8 and $50{\mu}m$ were used as pore forming agent for fabricating the porous W. The $WO_3$ powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at $1200^{\circ}C$ in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about $400^{\circ}C$ and $WO_3$ was reduced to metallic W at $800^{\circ}C$. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.

Study on the Biodegradable Aliphatic Polyester(V): Thermal and Mechanical Properties of Copolyesterethylene/LDPE Blend (생분해성 지방족 폴리에스테르에 관한 연구(V) : Copolyesterethylene/LDPE 블렌드의 열적 성질 및 기계적 성질)

  • Park, Tae-Wook;Kang, Bye-Jung;Kim, Yong-Joo;Lee, Chi-Giu
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1068-1077
    • /
    • 1994
  • Blend samples of biodegradable copolyesterethylene(CPEE) with LDPE were prepared by melt-mixing through 0 to 100% per 10% interval for studying of common use of biodegradable polymer. Miscibility behavior of blend samples has been studied by observing the melting temperature change, melting enthalpy, cold crystallization temperature and crystallization enthalpy using differential scanning calorimetry. It was shown that 10~30% blend composition of CPEE had the partial miscibility from the results of thermal analysis. Valuable compatibility has been observed in all blend composition except the samples of 30~80% CPEE component from results of mechanical properties. Morphology of blends has been observed with scanning electron microscopy. Biodegrability of CPEE/LDPE blends has been evaluated by measuring the change of weight after the inoculation with specific microorganism.

  • PDF