• Title/Summary/Keyword: Thermal warpage

Search Result 62, Processing Time 0.026 seconds

Analytical and experimental study on the quality improvement of 2 cavity injection-molded LCD frame (2 캐비티 LCD 사출품의 품질향상에 관한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Jang, Eun-Sil;Han, Chang-Woo;Son, Jae-Yong;Lee, Young-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3815-3821
    • /
    • 2012
  • The LCD frame is an important part which supports the BLU of medium/large sized TFT-LCD. To produce it efficiently, it is necessary to achieve the molding process improvement from 1 cavity to 2 cavity system. Because 2 cavity mold is compact and its hot-runner zone is broadened, it is difficult to control the temperature on the mold. In this study, injection molding analysis on the frame in 2 cavity process with FEA(Finite Element Analysis) software is carried out to estimate its quality. The calculated injection molding pressures and maximum deflection in 1 and 2 cavity processes are 41.13 MPa and 1.62 mm, 40.49 MPa and 1.66 mm respectively. The measured maximum flexure load and surface roughness of the left and right frame of 2 cavities are 209 N and 0.08 ${\mu}m$, 193 N and 0.10 ${\mu}m$ while those in 1 cavity are 140 N and 0.13 ${\mu}m$. Thermal image shows that the maximum standard deviation of the temperature on left and right side of 2 cavity mold is $1.23^{\circ}C$. The simulation and measurement results show that the quality of the frame in 2 cavity injection molding process as a whole is not worse than that of 1 cavity system. But maximum flexure loads of the frame in 2 cavity process are far greater than that in 1 cavity process.

A High Yield Rate MEMS Gyroscope with a Packaged SiOG Process (SiOG 공정을 이용한 고 신뢰성 MEMS 자이로스코프)

  • Lee Moon Chul;Kang Seok Jin;Jung Kyu Dong;Choa Sung-Hoon;Cho Yang Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.187-196
    • /
    • 2005
  • MEMS devices such as a vibratory gyroscope often suffer from a lower yield rate due to fabrication errors and the external stress. In the decoupled vibratory gyroscope, the main factor that determines the yield rate is the frequency difference between the sensing and driving modes. The gyroscope, fabricated with SOI (Silicon-On-Insulator) wafer and packaged using the anodic bonding, has a large wafer bowing caused by thermal expansion mismatch as well as non-uniform surfaces of the structures caused by the notching effect. These effects result in large distribution in the frequency difference, and thereby a lower yield rate. To improve the yield rate we propose a packaged SiOG (Silicon On Glass) technology. It uses a silicon wafer and two glass wafers to minimize the wafer bowing and a metallic membrane to avoid the notching. In the packaged SiOG gyroscope, the notching effect is eliminated and the warpage of the wafer is greatly reduced. Consequently the frequency difference is more uniformly distributed and its variation is greatly improved. Therefore we can achieve a more robust vibratory MEMS gyroscope with a higher yield rate.

  • PDF