• Title/Summary/Keyword: Thermal video camera

Search Result 38, Processing Time 0.026 seconds

Thermal Image Mosaicking Using Optimized FAST Algorithm

  • Nguyen, Truong Linh;Han, Dong Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.41-53
    • /
    • 2017
  • A thermal camera is used to obtain thermal information of a certain area. However, it is difficult to depict all the information of an area in an individual thermal image. To form a high-resolution panoramic thermal image, we propose an optimized FAST (feature from accelerated segment test) algorithm to combine two or more images of the same scene. The FAST is an accurate and fast algorithm that yields good positional accuracy and high point reliability; however, the major limitation of a FAST detector is that multiple features are detected adjacent to one another and the interest points cannot be obtained under no significant difference in thermal images. Our proposed algorithm not only detects the features in thermal images easily, but also takes advantage of the speed of the FAST algorithm. Quantitative evaluation shows that our proposed technique is time-efficient and accurate. Finally, we create a mosaic of the video to analyze a comprehensive view of the scene.

The Educational Effect of the Visualization of Heat Conduction with a Thermal Imaging Camera on Elementary School Students in Small Group Activity - Focusing on the Change of the Mental Model of Why Metal Feels Cold - (열화상 사진기로 열전도 현상을 시각화한 자료가 소집단 활동에서 초등학생에게 미치는 교육적 효과 - 금속이 차갑게 느껴지는 이유에 대한 정신모형 변화를 중심으로 -)

  • Lee, Ga Ram;Ju, Eunjeong;Park, Il-Woo
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.3
    • /
    • pp.569-591
    • /
    • 2022
  • This study aims to investigate the educational effects of the visualization of heat conduction using a thermal imaging camera on elementary school students through small group activities. It endeavors to explain the reason for why metal feels cold. The scholars conducted in-depth interviews before and after learning the unit "Temperature and Heat" for four students in fifth grade in Seoul. Recorded video and audio materials of the activities, their outputs, and journals of scholars were collected, reviewed, and analyzed. The result demonstrated that visualizing heat conduction using the thermal imaging camera aroused curiosity and provided an opportunity for sophisticated observation and integrated thinking. In addition, the visualization of the heat conduction phenomenon was used as the basis for interpretation and rebuttal for active communication during the small group activities of the students. Consequently, the students changed their non-scientific beliefs, refined their knowledge, and developed their mental models through a small group discussion based on a thermal image video.

A Study on the Design of IoT-based Thermal Sensor and Video Sensor Integrated Surveillance Equipment (IoT 기반 열상 센서와 영상 센서 일체형 감시 장비 설계에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.9-13
    • /
    • 2019
  • In this paper, IoT based thermal sensor data and image sensor integrated environmental monitoring system for ship, and it is the monitoring system which can process and transmit the Full HD IP camera image and thermal data transmitted from the thermal module for processing and transmitting, and the viewer S/W is to be developed which provides in real time the information for actual surrounding temperature together with the image, and enables fire prediction which was impossible in the case of the existing equipment by estimating the temperature change as the thermal image is added to the image camera, and saves and analyzes all data while receiving the temperature data and image signal transmitted from the integrated thermal sensor environmental monitoring equipment for ship and displaying them as 2D on the monitoring system.

A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor (초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.27-31
    • /
    • 2000
  • Thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main Part of the system is thermal camera in which a focal plane array typed sensor is introduced The sensor detects mid-range infrared spectrum or target objects and then it output generic video signal which should be processed to form a thermal image frame. A digital signal processor(DSP) in the system inputs analog to digital converted data. performs algorithms to improve the thermal images and then outputs the corrected frame data to frame buffers for NTSC encoding and for digital outputs.. To enhance the quality of the thermal images, two point correction method is applied. Figures indicate that the corrected thermal images are much improved.

  • PDF

Development of Peripheral Devices on the Endoscopic Surgery System (내시경 수술시스템의 주변장치 개발)

  • Lee, Young-Mook;Song, Chul-Gyu;Lee, Sang-Min;Kim, Won-Ky
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.164-166
    • /
    • 1995
  • The objectives of study are to develop a peripheral device on the endoscopic surgery system. These systems are consist of the following units. They are a color monitor of high resolution, light source, computer system and endoscopic camera with a C-mount head, irrigator, color video printer, Super VHS recorder and a system rack. The color monitor is a NTSC monitor for monitoring the image projected of the surgical section. The lightsource is necessary to irradiate the interior of a body via an optic fiber, The light projector will adapt the brightness in accordance with changing distance from the object. A miniature camera using a color CCD chip and computer system is used to capture and control an image of the surgical section[1]. The video printer is a 300 DPI resolution using thermal sublimation methods, which is developed by Samsung Electronics Co., Ltd. The specification of the endoscopic data management system is consist of storage of a captured image and pathological database of patients [2-4].

  • PDF

Shock Waves in He II induced by a Gas Dynamic Shock Wave Impingement (기체역학적 충격파의 입사에 의해 유도된 초유동헬륨중의 충격파)

  • ;H. Nagai;Y. Ueta;K. Yanaka;M. Murakami
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.23-26
    • /
    • 2002
  • Two modes of shock waves propagating in He II (superfluid helium), this is a compression and a thermal shock waves, were studied experimentally by using superconductive temperature sensors, piezo pressure transducers and Schlieren visualization method with an ultra-high-speed video camera (40,500 pictures/sec). The shock waves are induced by a gas dynamic shock wave impingement upon a He II free surface. It is found that the shock Mach number of a transmitted compression shock wave is up to 1.16, and the shock Mach number of a thermal shock wave coincides well with the second sound velocity under each compressed He II state condition. The temperature rise ratio of an induced thermal shock wave to that of an incident gas dynamic shock wave was found to be very small, as small as 0.003 at 1.80K.

  • PDF

Unattended fire detection system using a wireless communication device (무선통신 단말기를 이용한 무인화재 감지시스템)

  • Chang, Rak-Ju;Lee, Soon-Yi;Kang, Suk-Won
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.25-26
    • /
    • 2015
  • The Unattended fire detection system using a wireless communication device is designed in this paper. If a fire occurs in some area, the system can detect and automatically extinguish the fire. The major functions for the system are: Unattended detection system for fire based on wireless communication system and Automatic extinguish device system; Thermal imaging camera and video camera system; Monitoring viewer and map viewer system.

  • PDF

Potential Efficacy of Multiple-shot Long-pulsed 1,064-nm Nd:YAG in Nonablative Skin Rejuvenation: A Pilot Study

  • Kim, Young-Koo;Lee, Hae-Jin;Kim, Jihee
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.159-165
    • /
    • 2020
  • Background and Objectives The ultimate goal in current skin rejuvenation practice is to achieve a good result with minimal pain and downtime. Nonablative skin rejuvenation (NSR) is one technique. The efficacy of the long-pulsed 1064 nm Nd:YAG laser (LPNDY) has not been assessed in NSR. Materials and Methods Three target areas were selected (bilateral cheeks and glabellar region) in six volunteer subjects. A LPNDY with an integral skin temperature monitor delivered three stacked shots to each target area (1064 nm, 12 mm spot, 13 J/cm2, 1 Hz) without any skin cooling or anesthesia. The skin temperature was recorded before, during, and after each set of shots using the system monitor and in real-time using a high-sensitivity (±0.001℃) near-infrared video camera. The skin reaction was observed with the naked eye, and pain and discomfort were assessed by the subjects during and after treatment. Results The subjects reported a mild feeling of heat with no discomfort during or after the test treatments. Mild erythema was observed around the treatment areas, without noticeable edema. A series of three ascending skin temperature stepwise peaks, with a decrease in skin temperature towards the baseline after the third shot, was observed consistently. The mean temperatures for shots 1, 2, and 3 for the cheeks were 39.5℃, 42.0℃, and 44.4℃, respectively, and for the glabella, 40.8℃, 43.9℃, and 46.2℃, respectively. Similar ranges were indicated on the system integral temperature monitor. Conclusion A set of three stacked pulses with the LPNDY at a low fluence achieved ideal dermal temperatures to achieve some dermal remodeling but without any downtime or adverse events. The temperature data from the integral thermal sensor matched the video camera measurements with practical accuracy for skin rejuvenation requirements. These data suggest that LPNDY would satisfy the necessary criteria to achieve effective NSR, but further studies will be needed to assess the actual results in clinical practice.

Application of Police Video Equipment for Fighting Crime and Legal Trends (범죄 대응을 위한 경찰 영상장비의 활용과 법 동향)

  • Lee, Hoon;Lee, Won-Sang
    • Informatization Policy
    • /
    • v.25 no.2
    • /
    • pp.3-19
    • /
    • 2018
  • With the introduction of video cameras into law enforcement, a great deal of police organizations have adopted the technology in their routine crime prevention activities. The up-to-date systems of ambient surveillance energized by CCTV, police wearable cameras, drones, and thermal imaging devices enable the police to thoroughly monitor public spaces as well as to rigorously arrest on-scene criminals. These efforts to improve the level of surveillance are often met with public resistance raising concerns over citizens' rights to privacy. Recent studies on the use of police video equipment have constantly raised the issues related to the lack of applicable legal provisions, risk of personal information and privacy infringement as well as security vulnerabilities. In this regard, the present study attempted to review the public surveillance methods currently used by law enforcement agencies worldwide within the context of public safety and individual rights to privacy. Furthermore, the present study also discussed the legal boundaries of police use of video equipment to address public concerns over privacy issues.

Combustion Characteristics of Wood Chips(Flame Shape of Combustion and Ignition Delay) (목재의 연소 특성(2)(연소형태와 연소특성))

  • Kim, Chun-Jumg;ARAI, Masataka;Kang, Kyung-Koo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.139-146
    • /
    • 1999
  • Combustion Characteristics of the wood chips(balsa chips) were experimental studied as fundamental investigation of the thermal recycle system of the urban dust. The urban dust contains plastics vegetable and lot of wood material. Then, a wood was chosen as an example of the component of urban dust. A small wood chip was burned in a electric furnace and mass reduction rate during volatile and combustion states were recorded by the micro-electric balance and the combustion flame shape took a photograph by video camera at the mass of wood chips and ambient temperature in the furance. Ignition delay took the minimum value when the mass of the test chip was 0.3g. When a mass of the test chip was smaller then 0.001g, combustion with flame did not burnt.

  • PDF