• 제목/요약/키워드: Thermal radiation analysis

검색결과 475건 처리시간 0.031초

A Thermo chemical Study of Arcjet Thruster Flow Field

  • J-R. Shin;S. Oh;Park, J-Y
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.257-261
    • /
    • 2004
  • Computational fluid dynamics analysis was carried out for thermo-chemical flow field in Arcjet thruster with mono-propellant Hydrazine ($N_2$H$_4$) as a working fluid. The theoretical formulation is based on the Reynolds Averaged Navier-Stokes equations for compressible flows with thermal radiation. The electric potential field governed by Maxwell equation is loosely coupled with the fluid dynamics equations through the Ohm heating and Lorentz force. Chemical reactions were assumed being infinitely fast due to the high temperature field inside the arcjet thruster. An equilibrium chemistry module for nitrogen-hydrogen mixture and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. Thermo-physical process inside the arcjet thruster was understood from the flow field results and the performance prediction shows that the thrust force is increased by amount of 3 times with 0.6KW arc heating.

  • PDF

원전 설계기준 사고시 냉각재계통 부분정체로 인한 비대칭 열유동 혼합해석 (Asymmetric Thermal-Mixing Analysis due to Partial Loop Stagnation during Design Basis Accident)

  • 황경모;진태은;김경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.51-54
    • /
    • 2002
  • When a cold HPSI (High Pressure Safety Injection) fluid associated with an design basis accident, such as LOCA (Loss of Coolant Accident), enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters a reactor pressure vessel downcomer, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. Previous thermal-mixing analyses have assumed that the thermal stratification phenomena generated in stagnated loop of a partially stagnated coolant loop are neutralized in the vessel downcomer by strong flow from unstagnated loop. On the basis of these reasons, this paper presents the thermal-mixing analysis results in order to identify the fact that the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is affected by the strong flow of the unstagnated loop.

  • PDF

화학 평형과 열복사를 포함한 로켓 플룸 유동 해석 (Numerical Analysis of Rocket Exhaust Plume with Equilibrium Chemistry and Thermal Radiation)

  • 신재렬;최정열;최환석
    • 한국추진공학회지
    • /
    • 제9권1호
    • /
    • pp.35-45
    • /
    • 2005
  • 여러 고도에서 화학 반응과 열복사 효과가 로켓 플룸 유동에 미치는 영향을 살피기 위한 수치 연구를 수행하였다. 압축성 유동의 Navier-Stokes 방정식을 유한 체적법에 근거한 완전 내재적 TVD코드로 해석하였으며, 탄화수소 혼합물의 자세한 열화학적 속성을 고려한 화학 평형과 광학적으로 두꺼운 매체의 열복사를 유동 해석 코드에 포함하였다. 지상 마하수 0, 고도 5.06 km에서 마하수 1.16 그리고 17.34 km에서 마하수 2.90로 비행하는 등유 연료 로켓의 플룸 유동을 해석하였다. 해석 결과는 서로 다른 고도 조건에서의 플룸의 구조와 함께 화학 반응과 복사의 영향을 보여 주었다. 추진 성능과 기저부 열차단의 측면에서, 화학 반응에 의한 배출가스의 온도 상승은 특히 고고도에서 무시할 수 없음을 알 수 있었다.

극저온냉동기 직냉형 진공시스템의 냉동부하 평가 (Evaluation of the required cooling capacity of the Cryocooler in the vacuum system)

  • 홍용주;박성제;김효봉;최영돈
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.171-173
    • /
    • 2003
  • The cryostat or dewar have been widely used for making and maintaining cryogenic and vacuum environments. The thermal performances of such cryogenic vacuum system mainly depend on the radiation heat transfer between hot and cold surface The characteristics of radiation heat transfer are complicated, because amounts of heat transfer depend on view factor, emissivities, and areas of thermal elements. In this study, the analysis of the radiation heat transfer in the small cryogenic vacuum system was performed using the surface to surface radiation model for evaluation of the required cooling capacity of the cryocooler.

  • PDF

단열재가 부착된 수직벽 표면의 온도제어 해석 (Analysis on Surface Temperature Control of an Insulated Vertical Wall Under Thermal Radiation Environment)

  • 강병하;피창헌;김석현
    • 설비공학논문집
    • /
    • 제24권4호
    • /
    • pp.323-329
    • /
    • 2012
  • In this study, a rational procedures for estimation of insulation thickness of a vertical wall for condensation control or personnel protection has been investigated. Design parameters are height of the wall, thermal conductivity, emissivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient.

비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석 (Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss)

  • 김택영;백승욱
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

플라스틱 온실(温室)의 일사량(日射量) 분석(分析)과 열적(熱的) 환경(環境)의 시뮬레이션에 관(關)한 연구(硏究) -플라스틱 온실(温室)의 열적환경(熱的環境)의 시뮬레이션- (Analysis of solar radiation and simulation of thermal environment in plastic greenhouse -Simulation of thermal environment in plastic greenhouse-)

  • 박재복;고학균
    • Journal of Biosystems Engineering
    • /
    • 제12권2호
    • /
    • pp.16-27
    • /
    • 1987
  • Greenhouse farming was introduced to the Korean farmers in the middle of 1950's and its area has been increased annually. The plastic greenhouse, which is covered with polyethylene or polyvinyl chloride film, has been rapidly spread in greenhouse farming since 1970. The greenhouse farming greatly contributed to the increase of farm household income and the improvement of crop productivity per unit area. Since the greenhouse farming is generally practiced during winter, from November to March, the thermal environment in the plastic greenhouse should be controlled in order to maintain favorable condition for plant growing. Main factors that influence the thermal environment in the plastic greenhouse are solar radiation, convective and radiative heat transfer among the thermal component of the greenhouse, and the use of heat source. The objective of this study was to develop a simulation model for thermal environment of the plastic greenhouse in order to determine the characteristics of heat flow and effects of various ambient environmental conditions upon thermal environments within the plastic greenhouse. The results obtained are summarized as follows: 1. Simulation model for thermal environment of the plastic greenhouse was developed, resulting in a good agreement between the experimental and predicted data. 2. Solar radiation being absorbed in the plant and soil during the daytime was 75 percent of the total solar radiation and the remainder was absorbed in the plastic cover. 3. About 83 percent of the total heat loss was due to convective and radiative heat transfer through the plastic cover. Air ventilation heat loss was 5 to 6 percent of total heat loss during the daytime and 16 to 17 percent during the night. 4. The effectiveness of thermal curtain for the plastic greenhouse at night was significantly increased by the increase of the inside air temperature of the greenhouse due to the supplementary heat. 5. When the temperature difference between the inside and outside of the greenhouse was small, the variation of ambient wind velocity did not greatly affect on the inside air temperature. 6. The more solar radiation in the plastic greenhouse was, the higher the inside air temperature. Because of low heat storage capacity of the plant and soil inside the greenhouse and a relatively high convective heat loss through the plastic cover, the increase of solar radiation during the daytime could not reduce the supplymentary heat requirement for the greenhouse during the night.

  • PDF

곡선 강박스거더교의 온도거동 분석을 위한 온도분포 예측기법에 관한 연구 (A Temperature Predicting Method for Thermal Behaviour Analysis of Curved Steel Box Girder Bridges)

  • 조광일;원정훈;김상효;여영건
    • 대한토목학회논문집
    • /
    • 제28권1A호
    • /
    • pp.105-113
    • /
    • 2008
  • 곡선 강박스거더교는 부분적인 일사에 의해 교량단면에 불균등한 온도분포와 함께 기타 불리한 하중조건이 복합되어 작용되므로 교량의 수명이 단축되거나 사용성을 저하시킬 수 있는 문제점을 가지고 있다. 따라서 곡선교 설계 시 방위각, 받침배치방식, 형상 등에 따라 온도에 의한 영향을 고려해야 하지만 온도거동의 특성이 명확히 규명되어 있지 않을 뿐만 아니라 현행 설계기준의 규정도 명확하지 못하여 보다 많은 연구가 필요한 실정이다. 본 연구에서는 기존의 연구에서 제안된 일사량 계산식과 열전달 유한요소해석기법을 병용하여 곡선 강박스거더교의 기하학적 형상 및 방위각에 따라 변화하는 온도분포를 보다 쉬운 방법으로 예측하는 기법을 개발하였고 실측된 곡선교의 온도자료를 통해 검증하였다. 또한, 개발된 온도분포예측기법과 3차원 구조해석을 이용하여 일사에 의한 곡선교의 거동을 분석한 결과, 곡선 외측면이 남측을 향하는 경우에서 고정단측 받침의 교축방향과 교축직각방향 반력이 크게 나타났으며 곡선반경이 감소할수록 모든 방향의 반력이 증가하는 경향을 보였다. 본 연구에서 제안한 온도분포예측기법을 바탕으로 향후 관련 연구를 통해 현재의 설계기준을 보완할 수 있는 합리적인 온도하중의 제시가 가능할 것으로 판단된다.

달탐사용 탑재체 개발을 위한 전산응용 개념 설계 (CONCEPTUAL DESIGN BY APPLIED COMPUTATIONAL ENGINEERING FOR THE MOON EXPLORER PAYLOAD DEVELOPMENT)

  • 김정훈;전형열;주광혁;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.173-178
    • /
    • 2011
  • Nowadays, SELENE-2 is under development for the moon explorer rover in Japan. AXS(Active X-ray Spectrometer) sensor development among the candidated payloads will be on going by the world-wide co-operation. The thermal design, analysis and test will be specially performed by Korean institutes. CFD techniques are used for the conceptual design and analysis. Thin-shell plate meshes being applied by Monte-Carlo Ray Tracing Method are generated for the thermal radiation analysis. Lumped capacity model is employed for the thermal conduction simulation of the AXS payload itself. Various shapes of the payload configuration with thermal boundary conditions are proposed and selected on the purpose of the analysis of the initial design. The results of the analysis are supposed to be used as the baseline for the further detailed design of the AXS payload in the future.

  • PDF

석탄화력 보일러 연소열성능 해석 : 온도와 열에너지 분포를 중심으로 (Computational Studies on the Combustion and Thermal Performance of the Coal Fired Utility Boiler : Temperature and Thermal Energy Distribution)

  • 서상일;박호영;이성노
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.157-166
    • /
    • 2009
  • The pulverized coal combustion behavior in the coal fired utility boiler has been investigated with the CFD and process analysis techniques. The used commercial software were CFX and PROATES, and these were coupled each other to get more reliable boundary condition set-up, resulting in more reliable solution. For two cases which were the actual operation condition of A power plant, the calculated values from the coupled CFD and process analysis for thermal energy system were compared with the plant data, and the good agreements were obtained for Case 1 and 2. The calculated temperature distributions on the surface of heat exchangers were compared with the plant data for the steam temperatures across heat exchangers, and these explained the actual operating situation very well. The temperature deviation across the final superheater tube, which was believed to be the main cause of the frequent tube failure, were also explained very well with the calculated distributions of gas temperature and radiation on the plane of the final superheater.