• Title/Summary/Keyword: Thermal plume

Search Result 106, Processing Time 0.028 seconds

Practical Study of the Thermal Efficiency Improvement and the White Plume Removal from Flue Gas by Fuel Additive Injection (연료첨가제를 이용한 열효율향상 및 가시백연 제거에 관한 연구)

  • 전상기;조승원;황영호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.487-488
    • /
    • 2003
  • 우리나라 대기환경기준이 점차 강화되고 있고, 국민의 욕구수준 또한 선진국 수준으로 강화될 계획으로 있어 이에 따른 대기오염 방지시설의 설치 또는 보완이 요구되고 있다 특히, 배기가스 중 황산화물 및 질소산화물 배출농도 강화로 울산화력발전소에서는 최신의 배연탈황ㆍ탈질설비를 가동중에 있으나 황산 Mist가 주요원인으로 추정되는 Plume Opacity가 발생되어 오염물질 배출농도는 법적규제기준 이내로 배출되더라도 민원이 발생되고 있다. 이에 대한 대책으로 현장에 적합한 연료첨가제 주입으로 Plume Opacity 발생원인을 제거함과 동시에 배연탈황설비에서 발생된 저온부식 현상을 개선하고, 보일러 내 고온부식 등 연소장애 현상 개선을 통한 열효율 향상 방안에 대해 연구하였다. (중략)

  • PDF

A Study on the Bubble Flow in the Gas-Liquid Plume (기-액 기둥에서 기포유동에 관한 연구)

  • Seo, Dong-Pyo;Hong, Myung-Seok;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2105-2108
    • /
    • 2003
  • The characteristics of upward bubble flow were experimentally investigated in a liquid bath. In the present study, a thermal-infrared camera and high speed CCO camera were used to measure their temperature and local rising velocity, respectively. Heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. The rising velocity of bubble was calculated for two different experimental conditions: 1) bubble flow without kinetic energy 2) with kinetic energy. Bubble flow without kinetic energy starts to undergo the effect of inertia force 10cm away from the nozzle. Whereas, kinetic energy is dominant before 30 cm away from the nozzle in bubble flow, but after this point, kinetic energy and inertial force are applied on bubble flow at the same time.

  • PDF

Numerical Evaluation of Cooling Performance of 1st Stage Liquid Rocket Engine Plume by Water Injection Types (1단용 액체로켓엔진 후류의 물분사 방식에 따른 수치적 냉각 성능 평가)

  • Moon, Yoon-Wan;Kim, Seung-Han;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.739-740
    • /
    • 2010
  • Numerical studies were performed to investigate an effective water cooling type for reducing the thermal load of deflector in test facility with two cooling types and various mass flow rate conditions. According to analyses a core water injection type was superior to a side water injection fro the viewpoint of reducing the thermal load of deflector.

  • PDF

Mixing Zone Analysis on Outfall Plume considering Influent Temperature Variation (수온 변화의 영향을 고려한 방류관 플룸의 혼합역 분석)

  • 김지연;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.247-253
    • /
    • 2004
  • As a large scale port development in coastal waters proceeds step by step and populations in the vicinity of port are getting increased, the issue on "how to dispose the treated municipal water and wastewater in harbor" brings peoples′ concern. The submarine outfall system discharges the primary or secondary treated effluent at the coastline or in deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding sea water and becomes very dilute. We intended in this paper to investigate the impact on dilution of effluent and the behavior of flume under the conditions of the seasonal and spatial temperature variations, which have not been noticeable in designing effective marine outfall system. To predict and analyze the behaviour and dilution characteristics of plume not just with the effluent temperature, but also with the seasonal variation of temperature of surround water and tidal changes, CORMIX(Cornell Mixing Zone Expert System)-GI have been applied. The results should be used with caution in evaluation the mixing zone characteristics of discharged water. We hope to help for the effective operation of outfall system, probable outfall design, protection of water quality, and warm water discharges from a power plant, etc.

  • PDF

Numerical computation of pulsed laser ablation phenomena by thermal mechanisms (열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산)

  • Oh, Bu-Kuk;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

Evidence for Hydrothermal Plume in Manus Basin, SW Pacific: Distribution of Transparency and Hydrogen Sulfide (남서태평양 마누스분지 해역의 열수 plume 증거: 투명도 및 황화수소 분포)

  • Lee, Kyeong-Yong;Park, Yong-Chul;Son, Seung-Kyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.363-373
    • /
    • 2000
  • To understand and investigate chemical characteristics of thermal environment in the southwestern Paciflc, we have measured hydrological and chemical parameters such as temperature, salinity, transparency, pH, nutrients and hydrogen sulfide (H$_2$S). Samples were collected with CTD-casting at 12 station, in Manus Basin including PACMANUS, DESMOS and Susu Knolls, Hydrothermal systems consist of circulation zones where seawater interacts with rock, thereby changing chemical and physical characteristics of both the seawater and the rock. The altered seawater, called hydrothermal fluid, is injected back into the ocean from the hydrothermal vent fields and forms hydrothermal plumes. Consequently, we detected hydrothermal plume with transparency and sulfide anomalies at PACMANUS and Susu Knolls. Sulfide, as geochemical tracer of hydrothermal plume, ranged 0-3.31 ${\mu}$M, and averaged 0.63 ${\mu}$M in the study area. The height, flux and activity of the plume are affected by circulations in the deep water and the spread of plume follows along the isopycnal surface. Therefore the observed H$_2$S anomaly can provide important clue for the source location and it appears that the targestsource in the PACMANUS is aligned in the north-south direction.

  • PDF

Dynamics of the River Plume (하천수 플룸 퍼짐의 동력학적 연구)

  • Yu, Hong-Sun;Lee, Jun;Shin, Jang-Ryong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.413-420
    • /
    • 1994
  • Dynamics of the river plume is a very complicated non-linear problem with the free boundary changing in time and space. Mixing with the ambient water through the boundary makes the problem more complicated. In this paper we reduced 3-dimensional problem into 1-dimensional one by using the integral analysis method. Basic equations have been integrated over the lateral and vertical variations. For these integrations we adopted the well-established assumption that the flow-axis component of plume velocity and the density difference of the plume with the ambient water have Gaussian distributions in directions which are perpendicular to the flow-axis of the plume. We also used the result of our previous study on the lateral spreading velocity of the plume derived under the same assumption. And entrainment was included as a mixing process. The resultant 1-dimensional equations were solved by Runge-Kutta numerical method. Consequently, comparatively easy method of numerical analysis is presented for the 3-dimensional river plume. The method can also be used for the analysis of the thermal plume of cooling water of power plants.

  • PDF

Generalization of Vertical Plume Despersion in the concective Boundary Layer at Long Distances on Mesoscale (중거리에서 대류경계층 연직방향 plume 확산의 일반화)

  • 서석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • In order to genralize the vertical dispersion of plume at long distances on mesoscale over complex terrain dispersion coefficients data have been obtained systematically according to lapsed time after release by using a composite turbulence water tank that simulates convective boundary layer. Dispersion experiments have been carried out for various combined conditions of thermal turbulence intensity mechanical turbulence intensity and plume release height at slightly to moderately unstable conditions. Results of tracer dispersion experiments conducted using water tank camera and image processing system have been converted into atmospheric dispersion data through the application of similarity law. The equation $\sigma$z/Zi=aX/(b+c X2)0.5 where $\sigma$2; vertical dispersion coefficient zi : mixing height X : dimen-sionaless downwind distance was confirmed to be an appropriate and general equation for expressing $\sigma$2 variation with turbulence intensity and plume release height, The value of "a" was found to be principally affected by mechanical turbulence intensity and that of "b" by mechanical turbulence intensity and release height. It was confirmed that the magnitude of "c" varies with release height. Results of water tank experiments on the relationship of $\sigma$2 vs downwind distance x have been compared with actual atmospheric dispersion data such as CONDORS data and Bowne's nomogram Operating conditions of a composite turbulence water tank for simulating the field turbulence situations of CONDORS experiments and Bowne's $\sigma$2(x) nomogram for suburban area have also been investigated in terms of water temperature difference between convection water tank and bottom plate heating tank grid plate stroke mixing water depth length scale and velocity scale. Moreover the effect of mechanical turbulence intensity on vertical dispersion has been discussed in the light of release height and downwind distance. height and downwind distance.

  • PDF

A Study of the Diffusion and Rise of Stack Plumes at Coastal Region by Using LIDAR Observation Data

  • Yoon, Ill-Hee
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.43-58
    • /
    • 1998
  • The Kwinana Shoreline Fumigation Experiment (KSFE) took place at Fremantle, WA, Australia between January 23 and February 8, 1995. The CSIRO DAR LIDAR measured plume sections from near the Kwinana Power Station (KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminum-garnet (Nd:YAG) laser operating at a fundamental wavelength of 1064 nm, with harmonics of 532 nm and 355 nm. For these experiments the third harmonic was used because the UV wavelength at 355 nm is eye safe beyond about 50 m. The laser fires a pulse of light 6 ns in duration (about 1.8 m long) and with an energy (at the third harmonic) of about 70 mJ. This pulse subsequently scattered and absorbed by both air molecules and particles in the atmosphere. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detected by a photo-multiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The smoke plume was clearly identifiable in the scans both before and after fumigation in the thermal internal boundary layer (TIBL). Both power station plumes were detected. Over the 9 days of operation, 1,568 plumes scans (214 series) were performed. Essentially all of these will provide instantaneous plume heights and widths, and there are many periods of continuous operation over several hours when it should be possible to compile hourly average plume statistics as well. The results of four days LIDAR observations of the dispersion of smoke plume in the TIBL at a coastal site are presented for the case of stages A and C.

  • PDF

Asymmetric Thermal-Mixing Analysis due to Partial Loop Stagnation during Design Basis Accident (원전 설계기준 사고시 냉각재계통 부분정체로 인한 비대칭 열유동 혼합해석)

  • Hwang K. M.;Jin T E.;Kim K. H.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.51-54
    • /
    • 2002
  • When a cold HPSI (High Pressure Safety Injection) fluid associated with an design basis accident, such as LOCA (Loss of Coolant Accident), enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters a reactor pressure vessel downcomer, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. Previous thermal-mixing analyses have assumed that the thermal stratification phenomena generated in stagnated loop of a partially stagnated coolant loop are neutralized in the vessel downcomer by strong flow from unstagnated loop. On the basis of these reasons, this paper presents the thermal-mixing analysis results in order to identify the fact that the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is affected by the strong flow of the unstagnated loop.

  • PDF