• Title/Summary/Keyword: Thermal phase transition

Search Result 250, Processing Time 0.027 seconds

Study of Thermal Stability of Ni Silicide using Ni-V Alloy

  • Zhong, Zhun;Oh, Soon-Young;Lee, Won-Jae;Zhang, Ying-Ying;Jung, Soon-Yen;Li, Shi-Guang;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok;Kim, Yeong-Cheol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • In this paper, thermal stability of Nickel silicide formed on p-type silicon wafer using Ni-V alloy film was studied. As compared with pure Ni, Ni-V shows better thermal stability. The addition of Vanadium suppresses the phase transition of NiSi to $NiSi_2$ effectively. Ni-V single structure shows the best thermal stability compared with the other Ni-silicide using TiN and Co/TiN capping layers. To enhance the thermal stability up to $650^{\circ}C$ and find out the optimal thickness of Ni silicide, different thickness of Ni-V was also investigated in this work.

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.

Effect of GaGe Sputtering Power on Ga Doping in Phase Change Memory Materials (상 변화 메모리 재료 내의 Ga 주입에 미치는 GaGe 스퍼터링 전력의 영향)

  • Jung, Soon-Won;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.285-290
    • /
    • 2015
  • The phase change memory material is an active element in phase change memory and exhibits reversible phase transition behavior by thermal energy input. The doping of the phase change memory material with Ga leads to the increase of its crystallization temperature and the improvement of its amorphous stability. In this study, we investigated the effect of GaGe sputtering power on the formation of the phase change memory material including Ga. The deposition rate linearly increased to a maximum of 127 nm and the surface roughness remained uniform as the GaGe sputtering power increased in the range from 0 to 75 W. The Ga concentration in the thin film material abruptly increased at the critical sputtering power of 60 W. This influence of GaGe sputtering power was confirmed to result from a combined sputtering-evaporation process of Ga occurring due to the low melting point of Ga ($29.77^{\circ}C$).

New Analysis Approach to the Characteristics of Excimer Laser Annealed Polycrystalline Si Thin Film by use of the Angle wrapping (엑시며 레이저에 의해 형성된 다결정 실리콘 박막의 Angle wrapping에 의한 깊이에 따른 특성변화)

  • Lee, Chang-U;Go, Seok-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.884-889
    • /
    • 1998
  • Amorphous silicon films of large area have been crystallized by a line shape excimer laser beam of one dimensional scanning with a gaussian profile in the scanning direction. In order to characterize the crystalline phase transition of thickness variables in excimer laser annealing(ELA), angle wrapping method was used. And also to characterize the residual stresses of crystalline phase transition in the case of angle wrapped-crystalline silicon on corning 7059 glass, polarized raman spectroscopies were measured at various laser energy density and substrate temperature. The residual stress varies from $9.0{\times}10^9$ to $9.9{\times}10^9$, and from $9.9{\times}10^9$ to $1.2{\times}10^10$dyne/${cm}^2$ of the substrate temperature at room temperature and varies from $8.1{\times}10^9$ to $9.0{\times}10^9$, and from $9.0{\times}10^9$ to $9.9{\times}10^9$dyne/${cm}^2$ of the substrate temperature at $400^{\circ}C$ as a function of direction from surface to substrate. According to the direction from the surface in liquid phase to the interface and from the interface to near the substrate in solid phase of recrystallized Si thin film, respectively. Thus, the stress is increased from(Liquid phase to solid phase) with phase transition.

  • PDF

Synthesis and Characterization of the Layered Type $(C_nH_{2n+1}NH_3)_2PbCl_4$ System

  • Lee, Su Jong;Kim, Gye Ya;O, Eun Ju;Kim, Gyu Hong;Yeo, Cheol Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.317-320
    • /
    • 2000
  • Layered $K_2NiF_4$type ($C_nH_{2n+1}NH_3)_2PbCl_4$(n=6, 8 and 10) system, or alkylammonium tetrachloroplumbate compound, has been synthesized from $PbCl_2$ and $C_nH_{2n+1}NH_3Cl$ solutions under argon ambient pressure for 12hrs at $90^{\circ}C$. The crystal structure of the compound has been analyzed using X-ray powder diffaction in the range of $5^{\circ}{\leq}2{\theta}{\leq}55^{\circ}$, and all samples assigned to an orthorhombic system. Local distances of the Pb-Cl bond have been determined by Pb $L_{III}$-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The vibration modes of alkylammonium chains and the absorpton peaks of an excition have been examined by FT-IR and UV-Vis. reflectance spectra, respectively. The phase transition temperatures of the compounds have been studied by using DSC. According to the thermal analysis, two phase transition temperatures have been observed in the compositons of n=8 and 10.

Generation of Maxwell Displacement Current Across Single monolayers due to Phase transition

  • Mitsumasa Iwamoto;Wu, Chen-Xu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.6.1-10
    • /
    • 1996
  • Starting from the Debye theory of rotational Brownian motion equation, we derive an expression for explaining the generation of Maxwell displacement current (MDC) across single monolayers on a material surface. The orientational order parameter and the dielectric relaxation the of monolayers are derived. Based on fille analyses developed here, we examine the MDC across phospholipid monolayers with thermal stimulation due to the change in the spontaneous polarization, and the generation of MDC from 4-cyano-4\`-5-alkayl-biphenyl(5CB) Langmuir-film at the onset of transition by monolayer compression

Dielectric relaxation properties in the lead scandium niobate

  • Yeon Jung Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.227-232
    • /
    • 2023
  • In this study, complex admittance as a function of temperature and frequency was measured to analyze the important relaxation properties of lead scandium niobate, which is physically important, although it is not an environmentally friendly electrical and electronic material, including lead. Lead scandium niobate was synthesized by heat treating the solid oxide, and the conductance, susceptance and capacitance were measured as a function of temperature and frequency from the temperature dependence of the RLC circuit. The relaxation characteristics of lead scandium niobate were found to be affected by contributions such as grain size, grain boundary characteristics, space charge, and dipole arrangement. As the temperature rises, the maximum admittance and susceptance increase in one direction, but the resonance frequency decreases below the transition temperature but increases after the phase transition.

Effect of Length of Alkyl Group on Thermal-Liquid Crystalline Properties of Cholesteryl 4-n-Alkoxybenzoate (알킬기의 길이가 콜레스테릴 4-n-알콕시벤조에이트의 열적-액정 특성에 미치는 영향)

  • Yoon, Doo-Soo;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.69-74
    • /
    • 2017
  • In this study, cholesteryl 4-n-alkoxybenzoates (Chol-n), with alkyl groups used for controlling the temperature of transition to the liquid crystal phase, were synthesized, and the effects of the length of the alkyl groups on the physical properties of the liquid crystal compounds were investigated. The chemical structures and thermal and liquid crystalline properties of the synthesized compounds were investigated by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ($^1H$-NMR), differential scanning calorimetry (DSC), and polarizing optical microscopy (POM). The synthesized compounds showed melting transition temperatures ($T_m$) in the range of $103^{\circ}C$ to $143^{\circ}C$ and all of the compounds except Chol-6 exhibited a wide liquid crystal phase temperature range of about $60^{\circ}C$ to $100^{\circ}C$. No correlation between the number of carbon atoms in the molecule and the thermal properties of the compounds was found. All of the synthesized compounds showed an enantiotropic cholesteric phase, which was accompanied by a chiral smectic phase in the compounds Chol-6, Chol-8, Chol-9, and Chol-10. All of the compounds exhibited thermochromism in the liquid crystal state, and their color changed from red to blue as the temperature was increased.

Effect of Boron on Electrical and Thermal Conductivities of Aluminum (알루미늄의 전기 및 열전도도에 미치는 Boron의 영향)

  • Park, Min-Kyung;Cho, Jae-Ik;Lee, Seong-Hee;Kim, Cheol-Woo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.5
    • /
    • pp.147-152
    • /
    • 2016
  • Aluminum has been used as an alternative material for copper, due to its good electrical and thermal conductivities. However, small quantities of transition elements such as Ti and V affect the conductivities of aluminum. Therefore, in this study, the influence of B addition to reduce the effects of Ti and V on the conductivities of aluminum was investigated. Both the electrical and thermal conductivities of aluminum were improved with addition of B up to 0.05 wt%, while the conductivities were gradually reduced with an excess amount of B. SEM-EDS and XRD results exhibited that B reacted with Ti and V element to form diborides, such as $TiB_2$ and $VB_2$ phase, and those diborides tended to settle down to the bottom of the crucible because their densities were higher than that of aluminum melt. As a result, B reduced the deleterious effects of Ti and V, and the electrical and thermal conductivities of aluminum were improved.

Thermal stability enhancement of silicide by kinetic modifications (Kinetics 수정에 의한 실리사이드의 열적 안정성 향상에 대한 연구)

  • Nam, Hyoung-Gin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1042-1046
    • /
    • 2007
  • In this study, we investigated the mechanism responsible for the thermal stability of CoSi by addition of a foreign chemical element. Addition of W was found to increase the heat of formation of CoSi. This increase was claimed to inhibit the glass formation, which is preferred by silicide formation kinetics depicted by the maximum system energy degradation rate. In this case, there forms at the interface between CoSi and Si wafer a crystalline structure, the effective diffusion coefficient of which is much less than the self-diffusion rate provided by the glass. It was stated that the phase transition requires a higher thermal energy as the consequence, thereby enhancing the thermal stability of CoSi.

  • PDF