• Title/Summary/Keyword: Thermal permeation

Search Result 127, Processing Time 0.026 seconds

Full Color Top Emission AMOLED Displays on Flexible Metal Foil

  • Hack, Michael;Hewitt, Richard;Urbanik, Ken;Chwang, Anna;Brown, Julie J.;Lu, Jeng Ping;Shih, Chinwen;Ho, Jackson;Street, Bob;Ramos, Teresa;Rutherford, Nicole;Tognoni, Keith;Anderson, Bob;Huffman, Dave
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. For portable applications flexible (or conformable) and rugged displays will be the future. In this paper we outline our progress towards developing such a low power consumption active-matrix flexible OLED $(FOLED^{TM})$ display. We demonstrate full color 100 ppi QVGA active matrix OLED displays on flexible stainless steel substrates. Our work in this area is focused on integrating three critical enabling technologies. The first technology component is based on UDC's high efficiency long-lived phosphorescent OLED $(PHOLED^{TM})$ device technology, which has now been commercially demonstrated as meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active-matrix backplanes, and for this our team are employing PARC's Excimer Laser Annealed (ELA) poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing, and in this device we employ a multilayer thin film Barix encapsulation technology in collaboration with Vitex systems. Drive electronics and mechanical packaging are provided by L3 Displays.

  • PDF

Development of BiPbAgSrCaCuO Superconductor used diffusion of dual layer and The growth mechanism process of superconducting phase (이중층 시료에서 확산을 이용한 BiPbAgSrCaCuO 초전도체 개발 및 초전도상 성장기구)

  • Choi, S.H.;Gang, H.G.;Yu, H.S.;Yu, J.J.;Choi, M.H.;Kim, M.K.;Choi, H.S.;Han, T.H.;Park, S.J.;Hwang, J.S.;Han, B.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.22-27
    • /
    • 1993
  • we prepared 70K new BiPbAgSrCaCuO superconductor used diffusion of dual layer which composed of SrCaCuO and BiPbAgCuO compound. This method is used permeation and diffusion on partial melting point of BiPbAgCuO compound. Samples were analyzed by means of X-ray diffraction analysis, Thermal analysis, critical temperature and scanning electron microscopy. It was found that the best results were obtained for spread volume (A:B=1:0.6) and sintring time 210hours.

  • PDF

Effects of Concentration and Reaction Time of Trypsin, Pepsin, and Chymotrypsin on the Hydrolysis Efficiency of Porcine Placenta

  • Jung, Kyung-Hun;Choi, Ye-Chul;Chun, Ji-Yeon;Min, Sang-Gi;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • This study investigated the effects of three proteases (trypsin, pepsin and chymotrypsin) on the hydrolysis efficiency of porcine placenta and the molecular weight (Mw) distributions of the placental hydrolysates. Because placenta was made up of insoluble collagen, the placenta was gelatinized by applying thermal treatment at $90^{\circ}C$ for 1 h and used as the sample. The placental hydrolyzing activities of the enzymes at varying concentrations and incubation times were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel permeation chromatography (GPC). Based on the SDS-PAGE, the best placental hydrolysis efficiency was observed in trypsin treatments where all peptide bands disappeared after 1 h of incubation as compared to 6 h of chymotrypsin. Pepsin hardly hydrolyzed the placenta as compared to the other two enzymes. The Mw distribution revealed that the trypsin produced placental peptides with Mw of 106 and 500 Da. Peptides produced by chymotrypsin exhibited broad ranges of Mw distribution (1-20 kDa), while the pepsin treatment showed Mw greater than 7 kDa. For comparisons of pre-treatments, the subcritical water processing (37.5 MPa and $200^{\circ}C$) of raw placenta improved the efficiency of tryptic digestions to a greater level than that of a preheating treatment ($90^{\circ}C$ for 1 h). Consequently, subcritical water processing followed by enzymatic digestions has the potential of an advanced collagen hydrolysis technique.

A Study on the Preparation of Carboxylated Polysulfone/MeVpI-DVB Membranes and Its Characteristics (Carboxylated Polysulfon/MeVpl-DVB 막의 제조와 특성에 관한 연구)

  • 김관식;전경용;조영일
    • Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.26-34
    • /
    • 1995
  • In this study, polysulfone was carboxylated(CPSf), as a method of introducing carboxyl group to polymer main chain using direct lithiation reaction. Then, poly(1-alkyl-4-vinylpyridinium iodide-co-divinylbenzene) (MeVpI-DVB) containing pyridinium cation which has an anion selectivity as a fixed carrier was synthesized. And polymer membranes were prepared by mixing CPSf and MeVpI-DVB. Characteristics and permeation of membranes were investigated. As a result of synthesizing CPSf/MeVpI-DVB, blend was formed, not new copolymer. As the content of CPSf amount increasing, thermal stability of membranes was increasing. Ion exchange capacity was 1.0~1.8(meq/g dry mem.) and water content was 0.16~0.26(g $H_2{O}$)/g dry mem.) and fixed ion concentration was 6.4~7.3(meq/g $H_2{O}$) in synthetic membranes. The $Cl^-$ flux showed an increase due to the increase of CPSf content.

  • PDF

Synthesis and Properties of Nonfluoro Aminated Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) Anion Exchange Membranes for MCDI Process (막 축전식 탈염용 비불소계 아민화 Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) 음이온교환막의 합성 및 특성)

  • Koo, Jin-Sun;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.564-572
    • /
    • 2012
  • A terpolymer of vinylbenzyl chloride-co-ethyl methacrylate-co-styrene (VBC-EMA-St) was prepared for membrane capacitive deionization (MCDI) by radical polymerization and amination reaction of various amination times. Nonfluoro aminated VBC-EMA-St anion-exchange membranes were characterized by Fourier transform infrared (FTIR) spectrometry. Molecular weight, polydispersity and thermal stability were obtained by gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). The basic properties such as water uptake, ion exchange capacity, electrical resistance and CDI charge-discharge current were measured. The optimal values of ion exchange capacity, water uptake, electrical resistance and molecular weight of synthesized anion-exchange membrane were 1.69 meq/g, 23.7%, 1.61 ${\Omega}{\cdot}cm$ and $3.4{\times}10^4$ g/mol, respectively. As compared with conventional membrane, the pattern of cyclic charge-discharge current of synthesized anion-exchange membrane indicated efficient electrosorption and desorption.

Properties of Polycaprolactone Modified by Reaction Extrusion (반응압출법에 의해 개질된 폴리카프로락톤의 물성에 관한 연구)

  • Shin, Boo Young;Jang, Sang Hee
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.198-204
    • /
    • 2006
  • The modification of biodegradable polycaprolactone was accomplished by reactive extrusion with various contents of free radical initiator. Reaction conditions were in the temperature range of $130^{\circ}C$ to $180^{\circ}C$ with initiator contents of 0.1, 0.3, 0.5 and 1.0 wt%. To characterize the modified polycaprolactone (PCL), molecular weight was measured by gel permeation chromatography(GPC) and thermal, mechanical and rheological properties as well as biodegradability were measured. The modified PCL (MPCL) with 1% of initiator showed ca. 20% increase in crystallinity and ca. 50% increase in tensile modulus. Also, a large increase in rheological properties such as complex viscosity, storage and loss modulus was observed. The biodegradability of most MPCL was higher than that of virgin PCL.

  • PDF

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

The Study on In-situ Measurement of Hydrogen Permeability through Polymer Electrolyte Membranes for Fuel Cells (연료전지용 고분자전해질막의 실시간 수소 투과도 측정법 연구)

  • Lim, Yoon Jae;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2016
  • Polymer electrolyte membranes (PEMs) are key components to determine electrochemical fuel cell performances, in addition to electrode materials. The PEMs need to satisfy selective transport behaviors to small molecules including gases and protons; the PEMs have to transport protons as fast as possible, while they should act as hydrogen barriers, since the permeated gas induces the thermal degradation of cathode catalyst, resulting in rapid electrochemical reduction. To date, limited tools have been used to measure how fast hydrogen gas permeates through PEMs (e.g., Constant volume/variable Pressure (time-lag) method). However, most of the measurements are conducted under vacuum where PEMs are fully dried. Otherwise, the obtained hydrogen permeance is easily changeable, which causes the measurement errors to be large. In this study, hydrogen permeation properties through Nafion212 used as a standard PEM are evaluated using an in-situ measurement system in which both temperature and humidity are controlled at the same time.

Separation of Hydrogen-Nitrogen Gases by PTMSP-Borosilicate Composite Membranes (PTMSP-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Lee, Suk Ho;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.438-447
    • /
    • 2014
  • The amorphous and porous borosilicate without any cracks was obtained under the following condition : 0.01~ 0.10 mole ratio of trimethylborate (TMB)/ tetraethylorthosilicate (TEOS) and the temperature of $700{\sim}800^{\circ}C$. According to the BET and SEM measurements, borosilicate heat-treated in between 700 and $800^{\circ}C$ showed the surface area of $251.12{\sim}355.62m^2/g$, the pore diameter of 3.5~4.9 nm, and the particle size of 30~60 nm. According to the TGA measurements, the thermal stability of poly[1-(trimethylsilyl)propyne](PTMSP) membrane was enhanced by inserting borosilicate. SEM observation showed that the size of dispersed borosilicate in the composite membrane was $1{\mu}m$. The results showed that the permeability of $H_2$ and $N_2$ increased and the selectivity of $H_2/N_2$ decreased upon the addition of borosilicate into PTMSP membranes. Addition of borosilicate may possibly increase the free volume, cavity and porosity of membranes indicating that permeation occurred by molecular sieving, surface and Knudsen diffusion rather than solution diffusion of gases.

Polystyrene-b-poly(oligo(ethylene oxide) Monomethyl Ether Methacrylate)-b-polystyrene Triblock Copolymers as Potential Carriers for Hydrophobic Drugs

  • You, Qianqian;Chang, Haibo;Guo, Qipeng;Zhang, Yudong;Zhang, Puyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.558-564
    • /
    • 2013
  • A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b-polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance ($^1H$ NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore, the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b-POEOMA-b-PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.