• 제목/요약/키워드: Thermal oxidation method

검색결과 246건 처리시간 0.024초

MOS 소자용 Silicon Carbide의 열산화막 생성 및 특징 (Characteristics and Formation of Thermal Oxidative Film Silicon Carbide for MOS Devices)

  • 오경영;이계홍;이계홍;장성주
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.327-333
    • /
    • 2002
  • In order to obtain the oxidation layer for SiC MOS, the oxide layers by thermal oxidation process with dry and wet method were deposited and characterized. Deposition temperature for oxidation layer was $1100^{\circ}C$~130$0^{\circ}C$ by $O_2$ and Ar atmosphere. The oxide thickness, surface morphology, and interface characteristic of deposited oxide layers were measurement by ellipsometer, SEM, TEM, AFM, and SIMS. Thickness of oxidation layer was confirmed 50nm and 90nm to with deposition temperature at $1150^{\circ}C$ and $1200{\circ}C$ for dry 4 hours and wet 1 hour, respectively. For the high purity oxidation layer, the necessity of sacrificial oxidation which is etched for the removal of the defeats on the wafer after quickly thermal oxidation was confirmed.

알루미늄의 진공증발과 열산화에 의한 알루미나 복합분리막의 제조 및 특성분석 (Synthesis and Characterization of Alumina Composite Membrane by Al Evaporation and Thermal Oxidation)

  • 이동호;최두진;현상훈
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.349-358
    • /
    • 1995
  • The ceramic composite membrane was synthesized by thermal oxidation after evaporation of Al on the support prepared by slip casting process. Oxidation was performed at $700^{\circ}C$ and 80$0^{\circ}C$ under dry oxygen atmosphere. It was considered as optimum oxidation condition that the membrane showed a knudsen behaviro. A further oxidation resulted in an increase of gas permeability because top layer became densified. Then, a multi-layered composite membrane was synthesized through a sol-gel method, evaporation and thermal oxidation of Al coating processes. While the membrane was thermally stable up to 80$0^{\circ}C$, gas permeability was rapidly decreased even at a slight amount of deposition of Al.

  • PDF

상압화학기상 증착법에 의한 반도체탄소나노튜브의 성장과 $300^{\circ}C$ 대기에서의 산화열처리 효과 (The semiconductor carbon nanotube growth with atmosphere pressure chemical vapor deposition method and oxidation effect at $300^{\circ}C$ in air)

  • 김좌연
    • 한국결정성장학회지
    • /
    • 제15권2호
    • /
    • pp.57-60
    • /
    • 2005
  • [ $SiO_2$ ]로 산화된 웨이퍼 위에 상압화학기상증착 기술로 반도체 탄소나노튜브를 성장했으며, 이 나노튜브의 전기적 특성을 조사하였다. 전기적 특성은 반도체 탄소나노튜뷰를 $300^{\circ}C$, 대기 중에서 산화 열처리 시간을 변화시키면서 상온대기에서 측정하였다. 반도체 탄소나노튜브는 $300^{\circ}C$에서 산화 열처리 시간을 증가할수록 점차적으로 금속 탄소나노튜브로 변형되는 것을 보았다. 탄소나노튜브는 $300^{\circ}C$, 대기에서 6시간 동안 산화 열처리 후 표면의 일부가 없어지는 현상을 투과 전자현미경으로 확인하였다.

습식 산화법으로 성장된 산화구리입자를 이용한 방열 컴파운드 제조 및 특성 연구 (Characterizations of Thermal Compound Using CuO Particles Grown by Wet Oxidation Method)

  • 이동우;엄창현;주제욱
    • 한국재료학회지
    • /
    • 제27권4호
    • /
    • pp.221-228
    • /
    • 2017
  • Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu ($0.1{\mu}m$ and $7{\mu}m$) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at $75^{\circ}C$. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from $0.1{\mu}m$ Cu particles increased by 192.5 % and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.

Thermal Shock Behavior of TiN Coating Surface by a Pulse Laser Ablation Method

  • Noh, Taimin;Choi, Youngkue;Jeon, Min-Seok;Shin, Hyun-Gyoo;Lee, Heesoo
    • 대한금속재료학회지
    • /
    • 제50권7호
    • /
    • pp.539-544
    • /
    • 2012
  • Thermal shock behavior of TiN-coated SUS 304 substrate was investigated using a laser ablation method. By short surface ablation with a pulse Nd-YAG laser, considerable surface crack and spalling were observed, whereas there were few oxidation phenomena, such as grain growth of TiN crystallites, nucleation and growth of $TiO_2$ crystallites, which were observed from the coatings quenched from $700^{\circ}C$ in a chamber. The oxygen concentration of the ablated coating surface with the pulse laser also had a lower value than that of the quenched coating surface by Auger electron spectroscopy and electron probe micro analysis. These results were attributed to the fact that the properties of the pulse laser method have a very short heating time and so the diffusion time for oxidation was insufficient. Consequently, it was verified that the laser thermal shock test provides a way to evaluate the influence of the thermal shock load reduced oxidation effect.

Effect of Surface Treatment on the Formation of NiO Nanomaterials by Thermal Oxidation

  • Hien, Vu Xuan;Heo, Young-Woo
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.149-153
    • /
    • 2016
  • Thermal oxidation has significant potential for use in synthesizing metal-oxide nanostructures from metallic materials. However, this method has limited applicability to the synthesis of multi-morphology NiO from Ni foil. Techniques consisting of mechanical and chemical approaches were used to pre-treat the Ni foil (prior to oxidation) to promote the formation of nanowires and nanoplates on the NiO layer. These morphologies were realized on the Ni foils scratched by sand paper and a knife, respectively, and subsequently heat-treated at $500^{\circ}C$ for 24 h. Small nanowires (diameter: <10 nm) formed on the Ni foil treated by absolute $HNO_3$ and then oxidized at $500^{\circ}C$ for 24 h. The formation of various morphologies (on the pre-treated Ni foil), which differ from that formed in the case of pristine Ni foil after oxidation, may be attributed to the surface melting phenomenon that occurs during the nucleation process.

Oxidation Behaviors of SiCf/SiC Composites Tested at High Temperature in Air by an Ablation Method

  • Park, Ji Yeon;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Pouchon, Manuel
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.498-503
    • /
    • 2018
  • Using the thermal ablation method, the oxidation behavior of $SiC_f/SiC$ composites was investigated in air and in the temperature range of $1,300^{\circ}C$ to $2,000^{\circ}C$. At the relatively low temperature of $1,300^{\circ}C$, passive oxidation, which formed amorphous phase, predominantly occurred in the thermal ablation test. When the oxidation temperature increased, SiO (g) and CO (g) were formed by active oxidation and the dense oxide layer changed to a porous one by vaporization of gas phases. In the higher temperature oxidation test, both active oxidation due to $SiO_2$ decomposition on the surface of the oxide layer and active/passive oxidation transition due to interfacial reaction between oxide and base materials such as SiC fiber and matrix phase simultaneously occurred. This was another cause of high temperature degradation of $SiC_f/SiC$ composites.

열 산화법을 이용한 Cu2O 나노선의 대면적 합성 (Large-Scale Synthesis of Cu2O Nanowires by Thermal Oxidation Method)

  • 이근형
    • 한국재료학회지
    • /
    • 제24권7호
    • /
    • pp.388-392
    • /
    • 2014
  • $Cu_2O$ nanowires were synthesized at large scale on copper plate by thermal oxidation in air. The effect of oxidation time and temperature on the morphology of the nanowires was examined. The oxidation time had no effect on the diameter of the nanowires, while it had a great effect on the density and the length of the nanowires. The density and the length of the nanowires increased, and then decreased, with increasing oxidation time. The oxidation temperature had a tremendous effect on the size-distribution as well as the density of the nanowires. When the oxidation temperature was $700^{\circ}C$, uniform size-distribution and high density of the nanowires was achieved. At lower and higher temperatures, the density of the nanowires was lower, and they displayed a broader size-distribution. It is suggested that the $Cu_2O$ nanowires were grown via a vapor-solid mechanism because no catalyst particles were observed at the tips of the nanowires.

분광기를 이용한 가열산화 유지의 품질측정 (Quality Evaluation of Thermal Oxidized Fats and Oils by Spectrophotometer)

  • 장영상;이영수;조경련;이철원
    • 한국식품과학회지
    • /
    • 제26권6호
    • /
    • pp.655-658
    • /
    • 1994
  • 가열 산화된 유지들의 품질평가를 위한 방법의 하나로 분광기를 이용한 산화생성물외 측정과 여러가지 이화학적 향수들을 분석하였다. 산값은 가열시간의 경과에 따라 증가하는 경향이었으며, 특히 가열산화의 경우 대두유가 팜유 및 팜을레인유 보다 상승이 뚜렷하였다. 아니시딘값 및 공액중지방산값은 가열시간의 경과에 따라 중가하는 경향이었으며 팜유 및 팜을레인유보다 대두유에서 크게 상승하는 경향이었다. AOM 안정성의 변화는 팜유, 팜을레인유, 대두유외 순으로 좋게 나타났다. 또한, 가열산화유지의 산과정도를 POM과 SOM으로 측정할 수있었고, 일차 및 이차산화생성물은 가열산화시간에 따라 전반적으로 빠르게 중가하는 경향을 나타내었다. 본 연구의 결과로서 간단한 분광기를 이용하여 가열유지중의 POM과 SOM을 신속하게 측정할 수 있었고, 산업적으로 가열유지의 품질을 평가하는 방법의 하나로 사용가능할 것으로 본다.

  • PDF

Interfacial degradation of thermal barrier coatings in isothermal and cyclic oxidation test

  • Jeon, Seol;Lee, Heesoo;Choi, Youngkue;Shin, Hyun-Gyoo;Jeong, Young-Keun
    • 한국결정성장학회지
    • /
    • 제24권4호
    • /
    • pp.151-157
    • /
    • 2014
  • The degradation mechanisms of thermal barrier coatings (TBCs) were investigated in different thermal fatigue condition in terms of microstructural analyses. The isothermal and cyclic oxidation tests were conducted to atmospheric plasma sprayed-TBCs on NIMONIC 263 substrates. The delamination occurred by the oxide layer formation at the interface, the Ni/Cr-based oxide was formed after Al-based oxide layer grew up to ${\sim}10{\mu}m$ in the isothermal condition. In the cyclic oxidation with dwell time, the failure occurred earlier (500 hr) than in the isothermal oxidation (900 hr) at same temperature. The thickness of Al-based oxide layer of the delaminated specimen in the cyclic condition was ${\sim}4{\mu}m$ and the interfacial cracks were observed. The acoustic emission method revealed that the cracks generated during the cooling step. It was considered that the specimens were prevented from the formation of the Al-based oxide by cooling treatment, and the degradation mode in the cyclic test was dominantly interfacial cracking by the difference of thermal expansion coefficients of the coating layers.