• Title/Summary/Keyword: Thermal neutrons

Search Result 80, Processing Time 0.021 seconds

A Study on the Technology of Measuring and Analyzing Neutrons and Gamma-Rays Using a CZT Semiconductor Detector (CZT 반도체 검출기를 활용한 중성자 및 감마선 측정과 분석 기술에 관한 연구)

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.57-67
    • /
    • 2022
  • CZT detectors, which are compound semiconductors that have been widely used recently for gamma-ray detection purposes, are difficult to detect neutrons because direct interaction with them does not occur unlike gamma-rays. In this paper, a method of detecting and determining energy levels (fast neutrons and thermal neutrons) of neutrons, in addition of identifying energy and nuclide of gamma-rays, and evaluating gamma dose rates using a CZT semiconductor detector is described. Neutrons may be detected by a secondary photoelectric effect or compton scattering process with a characteristic gamma-ray of 558.6 keV generated by a capture reaction (113Cd + 1n → 114Cd + 𝛾) with cadmium (Cd) in the CZT detector. However, in the case of fast neutrons, the probability of capture reaction with cadmium (Cd) is very low, so it must be moderated to thermal neutrons using a moderator and the material and thickness of moderator should be determined in consideration of the portability and detection efficiency of the equipment. Conversely, in the case of thermal neutrons, the detection efficiency decreases due to shielding effect of moderator itself, so additional CZT detector that do not contain moderator must be configured. The CZT detector that does not contain moderator can be used to evaluate energy, nuclide, and gamma dose-rate for gamma-rays. The technology proposed in this paper provides a method for detecting both neutrons and gamma-rays using a CZT detector.

Fabrication of a superheated emulsion based on Freon-12 and LiCl suitable for thermal neutrons detection

  • Sara Sadat Madani Kouchak;Dariush Rezaei Ochbelagh;Peiman Rezaeian;Majid Abdouss
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1425-1430
    • /
    • 2024
  • This study develops superheated emulsion detectors that are both sensitive to fast neutrons, and thermal neutrons owing to the exergonic 63Li(n, α)31H capture reaction caused by the 6Li-containing compound dispersed throughout the gel-like medium. The experimental research was conducted on two SEDs. One detector was an ordinary Freon-12 detector and the other was a Freon-12 detector containing 3.4 % (by weight) LiCl. In order to investigate the sensitivity of lithium-containing SEDs to thermal neutrons, two types of SEDs were simultaneously exposed to various flux levels of thermal neutrons from 241Am-Be neutron source inside a cylindrical tank filled with water. A Boron-lined proportional counter was used to estimate the thermal neutron flux and the relevant MCNP code was developed for flux and dose calculations in the prepared set-up around 241Am-Be source. The results demonstrate that there is a proportional relationship between the variations of SED response and the change in thermal neutron flux and dose. Also, the sensitivity of SED was estimated.

Neutron Personal Dose Equivalent Evaluation Using Panasonic UD-809P Type TLD Albedo Dosimeters (Panasonic UD-809P 알비도 열형광선량계를 이용한 중성자 개인선량당량 평가)

  • Shin, Sang-Woon;Son, Joong-Kwon;Jin, Hua
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.143-154
    • /
    • 1999
  • Panasonic UD-809P type albedo neutron TL dosimeters mounted on a water phantom were used to measure neutron personal dose equivalent in a Korean nuclear power plant. From the measured TL readings, personal dose equivalents from thermal, epithermal and fast neutrons were evaluated by using a method adopted in a neutron dose calculation algorithm for Panasonic UD-809P type albedo neutron TL dosimeters, which was suggested in a Panasonic TLD System User's Manual. The results showed that personal dose equivalent from fast neutrons could not be adequately evaluated in a field with high thermal neutron fraction to be encountered in a nuclear power plant. This seems to be related to the incomplete incidence of albedo thermal neutrons to the TL dosimeters. In order to evaluate appropriately the personal dose equivalent from fast neutrons in the field condition, new method fer the neutron dose calculation algorithm was suggested. In this new method, neutrons are grouped into thermal neutrons and fast neutrons. For each neutron component, equations for TL response, sensitivity factor, calibration factor and personal dose equivalent were derived.

  • PDF

Experimental study of the influence of borehole parameters on prompt fission neutron uranium logging and its corrections

  • Pengfei Zhou;Bin Tang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3090-3096
    • /
    • 2024
  • In prompt fission neutron uranium logging, borehole environmental parameters affect the measured results and must be corrected. In order to explore the influence of borehole parameters on the interpretation of logging results, this paper builds a sandstone type uranium ore block model to simulate the field production drilling device based on the "Epithermal/Thermal neutron counting rate ratio" (E/T) theory. The effects of borehole diameter, thickness of iron tube and well fluid on the decay rate of epithermal and thermal neutrons and their uncertainty correction methods were investigated. The results show that the effect of borehole diameter on E/T is negligible. The iron tube thickness has a certain effect on the moderation and absorption of epithermal and thermal neutrons, and its E/T increases slightly with increasing thickness. The influence of iron tube thickness on E/T is corrected and the relative uncertainty is less than 5%. The well fluid thickness also affects the decay rate of epithermal and thermal neutrons, and its E/T follows the law of negative exponential attenuation. The influence of well fluid thickness on E/T is corrected and the relative uncertainty is less than 5%. This study provides technical guidance for field well survey of uranium deposit.

Neutron dosimetry with a pair of TLDs for the Elekta Precise medical linac and the evaluation of optimum moderator thickness for the conversion of fast to thermal neutrons

  • Marziyeh Behmadi;Sara Mohammadi;Mohammad Ehsan Ravari;Aghil Mohammadi;Mahdy Ebrahimi Loushab;Mohammad Taghi Bahreyni Toossi;Mitra Ghergherehchi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.753-761
    • /
    • 2024
  • Introduction: In this study, TLD 600 and TLD 700 pairs were used to measure the neutron dose of Elekta Precise medical linac. To this end, the optimum moderate thickness for the conversion of fast to thermal neutrons were evaluated. Materials and methods: 241Am-Be and 252Cf sources were simulated to calculate the optimum thicknesses of the moderator for the conversion of maximum fast neutrons (FN) into thermal neutrons (TN). Pair TLDs were used to measure F&TN doses for three different field sizes at four depths of the medical linac. Results: The maximum thickness of the moderator was optimized at 6 cm. The measurement results demonstrated that the TN dose increased with the expansion of field size and depth. The FN dose, which was converted TN, exhibits behaviors comparable to the TN due to its nature. Conclusion: This study presents the optimum thickness for the moderator to convert FN into TN and measure F&TN using TLDs.

A Study on the Neutron Dose Distribution in Case of 10 MV X-rays Radiotherapy (10MV X선 방사선 치료 시 중성자 선량 분포에 관한 연구)

  • Park, Cheol-Soo;Lim, Cheong-Hwan;Jung, Hong-Ryang;Shin, Seong-Soo
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.415-417
    • /
    • 2008
  • This study is to measure the radiation dose of neutrons generated by the particle accelerator during X-ray (photon) treatment with a neutron detection method by using CR-39, and to research how the generation of neutrons may incur problems associated with radiation doses for patient treatment when using high energy photons for cancer treatment as a clinical application. The findings are summarized as follows : The results showed that average 0.35mSv was measured with exposure of 1Gy photon in case of fast neutron, 0.65mSv with exposure of 2Gy photon, 1.82mSv exposure of 5Gy, 0.26mSv with exposure of 1Gy photon in case of thermal neutron, 0.56mSv with exposure of 2Gy photon, and 1.23mSv with exposure of 5Gy of photon. By measuring the occurrence of neutron by using Wedge Filter, it has been confirmed that the occurrence of neutrons increased when using Wedge Filter. The results also showed that more neutrons were detected over the existing experiments when using an SRS Cone requiring high doses of radiation. Total 2.85mSv neutrons were found on the average with exposure of 5Gy photon in case of fast neutron and 1.37mSv neutrons were found on the average with exposure of 5Gy photon in case of thermal neutron. During the general treatment, about 1.6 times more neutrons over 5Gy photon were found in case of fast neutron and about 1.12 time more neutrons over 5Gy photon were found in case of thermal neutron.

  • PDF

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF

Neutronic design of pulsed neutron facility (PNF) for PGNAA studies of biological samples

  • Oh, Kyuhak
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.262-268
    • /
    • 2022
  • This paper introduces a novel concept of the pulsed neutron facility (PNF) for maximizing the production of the thermal neutrons and its application to medical use based on prompt gamma neutron activation analysis (PGNAA) using Monte Carlo simulations. The PNF consists of a compact D-T neutron generator, a graphite pile, and a detection system using Cadmium telluride (CdTe) detector arrays. The configuration of fuel pins in the graphite monolith and the design and materials for the moderating layer were studied to optimize the thermal neutron yields. Biological samples - normal and cancerous breast tissues - including chlorine, a trace element, were used to investigate the sensitivity of the characteristic γ-rays by neutron-trace material interactions and the detector responses of multiple particles. Around 90 % of neutrons emitted from a deuterium-tritium (D-T) neutron generator thermalized as they passed through the graphite stockpile. The thermal neutrons captured the chlorines in the samples, then the characteristic γ-rays with specific energy levels of 6.12, 7.80 and 8.58 MeV were emitted. Since the concentration of chlorine in the cancerous tissue is twice that in the normal tissue, the count ratio of the characteristic g-rays of the cancerous tissue over the normal tissue is approximately 2.

Evaluation of Photoneutron Energy Distribution in the Radiotherapy Room (방사선치료실 내의 광중성자 에너지 분포 평가)

  • Park, Euntae;Ko, Seongjin;Kim, Junghoon;Kang, Sesik
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.223-231
    • /
    • 2014
  • Medical linear accelerator is widely used in radiation treatment field, and high energy photons, above 10 MV nominal accelerator voltage, are commonly utilized for the radiation treatment. However, these high energy photons lead the photo-nuclear reaction and the generation of photo-neutrons are accompanied. Thus, these problematic factors are issued in the view of radiation protection. Therefore, linear accelerator and radiation treatment room are simulated from MCNPX program in this study. The measurement points of interest are selected and analyzed, and the resulting effects derived from the properties of photo-neutron are evaluated. Therefore, we realized that the number of generating photo-neutrons was decreased by depending on the distance from the source. No matter what the nominal energy is set, the rates thermal neutrons to fast neutrons are marginal. It is founded that the amount of the thermal neutrons were decreased by depending on the distance from the source.

BREEDING EXPERIMENT ON MUTATION INDUCTION BY IRRADIATION (2) Effects of X-ray and Thermal Neutron Irradiation on Dry Seeds of Chinese Cabbage and Radish.

  • Kim, Dawng Woo;Kim, Yang Choon;Cho, Mi Kyung
    • Journal of Plant Biology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1962
  • 1) Germination rate was rather irregular than decreasing as increasing dose of radiation and there were no differences between Kyong-Sam and Chuong-Bang of Chinese cabbage. 2) In R1 generation, abnormal leaves from seedling of irradiated seeds were observed. These were more apparent in X-ray irradiation than in thermal neutron. 3) Seedling height was inhibited with increasing dose of X-ray and thermal neutrons. Growth inhibition was more remarkable in X-ray than in thermal neutron. Kyong-Sam demonstrated more sensitivity than Chyong-Bang in both X-ray and thermal neutron. 4) Seedling height produced from seeds subjected to thermal neutrons showed small variation around its mean value, while in X-irradiation there was a greater deviaton from the mean value. 5) Fertility was decreased as increasing with dose, while the frequency of abortive pollen was increased. There were variability of the fertility and frequency of abortive pollen among plants or branches of a plant. 6) The mutants were obtained more in thermal neutron irradiation than in X-ray. The types of mutations obtained in Chinese radish of R2 generation were abnormal leaf, densely glowing leaf, degeneration in growing point and dwarf. The maximum frequency of phenotypic mutations was abnormal leaf mutation.

  • PDF