• 제목/요약/키워드: Thermal neutrons

검색결과 80건 처리시간 0.019초

CZT 반도체 검출기를 활용한 중성자 및 감마선 측정과 분석 기술에 관한 연구 (A Study on the Technology of Measuring and Analyzing Neutrons and Gamma-Rays Using a CZT Semiconductor Detector)

  • 진동식;홍용호;김희경;곽상수;이재근
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권1호
    • /
    • pp.57-67
    • /
    • 2022
  • CZT detectors, which are compound semiconductors that have been widely used recently for gamma-ray detection purposes, are difficult to detect neutrons because direct interaction with them does not occur unlike gamma-rays. In this paper, a method of detecting and determining energy levels (fast neutrons and thermal neutrons) of neutrons, in addition of identifying energy and nuclide of gamma-rays, and evaluating gamma dose rates using a CZT semiconductor detector is described. Neutrons may be detected by a secondary photoelectric effect or compton scattering process with a characteristic gamma-ray of 558.6 keV generated by a capture reaction (113Cd + 1n → 114Cd + 𝛾) with cadmium (Cd) in the CZT detector. However, in the case of fast neutrons, the probability of capture reaction with cadmium (Cd) is very low, so it must be moderated to thermal neutrons using a moderator and the material and thickness of moderator should be determined in consideration of the portability and detection efficiency of the equipment. Conversely, in the case of thermal neutrons, the detection efficiency decreases due to shielding effect of moderator itself, so additional CZT detector that do not contain moderator must be configured. The CZT detector that does not contain moderator can be used to evaluate energy, nuclide, and gamma dose-rate for gamma-rays. The technology proposed in this paper provides a method for detecting both neutrons and gamma-rays using a CZT detector.

Fabrication of a superheated emulsion based on Freon-12 and LiCl suitable for thermal neutrons detection

  • Sara Sadat Madani Kouchak;Dariush Rezaei Ochbelagh;Peiman Rezaeian;Majid Abdouss
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1425-1430
    • /
    • 2024
  • This study develops superheated emulsion detectors that are both sensitive to fast neutrons, and thermal neutrons owing to the exergonic 63Li(n, α)31H capture reaction caused by the 6Li-containing compound dispersed throughout the gel-like medium. The experimental research was conducted on two SEDs. One detector was an ordinary Freon-12 detector and the other was a Freon-12 detector containing 3.4 % (by weight) LiCl. In order to investigate the sensitivity of lithium-containing SEDs to thermal neutrons, two types of SEDs were simultaneously exposed to various flux levels of thermal neutrons from 241Am-Be neutron source inside a cylindrical tank filled with water. A Boron-lined proportional counter was used to estimate the thermal neutron flux and the relevant MCNP code was developed for flux and dose calculations in the prepared set-up around 241Am-Be source. The results demonstrate that there is a proportional relationship between the variations of SED response and the change in thermal neutron flux and dose. Also, the sensitivity of SED was estimated.

Panasonic UD-809P 알비도 열형광선량계를 이용한 중성자 개인선량당량 평가 (Neutron Personal Dose Equivalent Evaluation Using Panasonic UD-809P Type TLD Albedo Dosimeters)

  • 신상운;손중권;김화
    • Journal of Radiation Protection and Research
    • /
    • 제24권3호
    • /
    • pp.143-154
    • /
    • 1999
  • Panasonic UD-809P 알비도 중성자 열형광선량계를 팬텀에 장착시켜 원자력발전소에서 중성자 개인선량당량을 측정하였다. 측정된 판독값으로부터 Panasonic 사의 사용자 매뉴얼에 제시되어 있는 방법을 이용하여 열중성자와 초열중성자 및 속중성자로 인한 개인선량당량을 평가하였다. 그 결과 열중성자 성분의 비율이 높은 원자력발전소에서는 속중성자로 인한 개인선량당량을 적절하게 평가할 수 없는 것으로 확인되었는데, 이는 열중성자로 인한 알비도 성분이 열형광선량계로 재입사 되는 양이 이론적인 값과 상당한 차이가 나기 때문인 것으로 추정되었다. 따라서 원자력발전소와 같이 열중성자 성분의 비율이 높은 조건에서 속중성자로 인한 중성자 개인선량당량을 평가하기 위하여 중성자 성분을 열중성자와 속중성자로 구분한 새로운 중성자 선량계산 알고리즘을 제안하였으며, 각각의 성분에 대한 개인선량당량과 교정인자, 민감도 인자 평가공식을 유도하였다.

  • PDF

Experimental study of the influence of borehole parameters on prompt fission neutron uranium logging and its corrections

  • Pengfei Zhou;Bin Tang
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3090-3096
    • /
    • 2024
  • In prompt fission neutron uranium logging, borehole environmental parameters affect the measured results and must be corrected. In order to explore the influence of borehole parameters on the interpretation of logging results, this paper builds a sandstone type uranium ore block model to simulate the field production drilling device based on the "Epithermal/Thermal neutron counting rate ratio" (E/T) theory. The effects of borehole diameter, thickness of iron tube and well fluid on the decay rate of epithermal and thermal neutrons and their uncertainty correction methods were investigated. The results show that the effect of borehole diameter on E/T is negligible. The iron tube thickness has a certain effect on the moderation and absorption of epithermal and thermal neutrons, and its E/T increases slightly with increasing thickness. The influence of iron tube thickness on E/T is corrected and the relative uncertainty is less than 5%. The well fluid thickness also affects the decay rate of epithermal and thermal neutrons, and its E/T follows the law of negative exponential attenuation. The influence of well fluid thickness on E/T is corrected and the relative uncertainty is less than 5%. This study provides technical guidance for field well survey of uranium deposit.

Neutron dosimetry with a pair of TLDs for the Elekta Precise medical linac and the evaluation of optimum moderator thickness for the conversion of fast to thermal neutrons

  • Marziyeh Behmadi;Sara Mohammadi;Mohammad Ehsan Ravari;Aghil Mohammadi;Mahdy Ebrahimi Loushab;Mohammad Taghi Bahreyni Toossi;Mitra Ghergherehchi
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.753-761
    • /
    • 2024
  • Introduction: In this study, TLD 600 and TLD 700 pairs were used to measure the neutron dose of Elekta Precise medical linac. To this end, the optimum moderate thickness for the conversion of fast to thermal neutrons were evaluated. Materials and methods: 241Am-Be and 252Cf sources were simulated to calculate the optimum thicknesses of the moderator for the conversion of maximum fast neutrons (FN) into thermal neutrons (TN). Pair TLDs were used to measure F&TN doses for three different field sizes at four depths of the medical linac. Results: The maximum thickness of the moderator was optimized at 6 cm. The measurement results demonstrated that the TN dose increased with the expansion of field size and depth. The FN dose, which was converted TN, exhibits behaviors comparable to the TN due to its nature. Conclusion: This study presents the optimum thickness for the moderator to convert FN into TN and measure F&TN using TLDs.

10MV X선 방사선 치료 시 중성자 선량 분포에 관한 연구 (A Study on the Neutron Dose Distribution in Case of 10 MV X-rays Radiotherapy)

  • 박철수;임청환;정홍량;신성수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제31권4호
    • /
    • pp.415-417
    • /
    • 2008
  • 현재 방사선치료는 선형가속기에 의하여 대다수 이루어지고 있으며 사용되는 방사선인 광자도 의학의 발전에 의해 고에너지화 고선량화 되고 있다. 본 연구에서는 방사선치료 조사면에서 중성자 측정이 가능한 CR-39를 이용한 중성자 검출법을 이용하였다. 선형가속기에서 발생되는 X선(광자)치료 시 발생 되는 중성자의 선량을 CR-39를 이용한 중성자 검출법을 이용하여 측정하고, 임상적 응용으로 고에너지 광자를 이용하여 암 치료에 사용할 때 중성자의 발생이 환자치료 선량과 연관되는 어떤 문제를 발생시키는지를 연구한 결과는 다음과 같다. 속중성자의 경우 광자 1Gy 조사 시 평균 0.35mSv, 2Gy 조사 시 평균 0.65mSv, 5Gy 조사 시 평균 1.82mSv, 열중성자의 경우 광자 1Gy 조사 시 평균 0.26mSv, 2Gy 조사 시 평균 0.56mSv, 5Gy 조사 시평균 1.23mSv의 중성자 발생하였다. Wedge Filter를 사용하여 중성자의 발생을 측정한 결과 Wedge Filter를 사용했을 때 중성자의 발생이 증가하였다. 고선량을 요구하는 SRS Cone을 사용했을 때에는 기존의 실험결과 보다 많은 중성자가 검출되었다. 속중성자의 경우 광자 5Gy 조사 시 평균 2.85mSv, 열중성자의 경우 광자 5Gy 조사 시 평균 1.37mSv의 중성자가 발생하였다. 일반 치료 시 광자 5Gy 조사했을 때 보다 속중성자의 경우 약 1.6배, 열중성자의 경우 약 1.12배 정도의 중성자가 더 발생하는 것으로 나타났다.

  • PDF

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF

Neutronic design of pulsed neutron facility (PNF) for PGNAA studies of biological samples

  • Oh, Kyuhak
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.262-268
    • /
    • 2022
  • This paper introduces a novel concept of the pulsed neutron facility (PNF) for maximizing the production of the thermal neutrons and its application to medical use based on prompt gamma neutron activation analysis (PGNAA) using Monte Carlo simulations. The PNF consists of a compact D-T neutron generator, a graphite pile, and a detection system using Cadmium telluride (CdTe) detector arrays. The configuration of fuel pins in the graphite monolith and the design and materials for the moderating layer were studied to optimize the thermal neutron yields. Biological samples - normal and cancerous breast tissues - including chlorine, a trace element, were used to investigate the sensitivity of the characteristic γ-rays by neutron-trace material interactions and the detector responses of multiple particles. Around 90 % of neutrons emitted from a deuterium-tritium (D-T) neutron generator thermalized as they passed through the graphite stockpile. The thermal neutrons captured the chlorines in the samples, then the characteristic γ-rays with specific energy levels of 6.12, 7.80 and 8.58 MeV were emitted. Since the concentration of chlorine in the cancerous tissue is twice that in the normal tissue, the count ratio of the characteristic g-rays of the cancerous tissue over the normal tissue is approximately 2.

방사선치료실 내의 광중성자 에너지 분포 평가 (Evaluation of Photoneutron Energy Distribution in the Radiotherapy Room)

  • 박은태;고성진;김정훈;강세식
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제37권3호
    • /
    • pp.223-231
    • /
    • 2014
  • 의료용의 선형가속장치는 방사선치료에 있어서 그 활용도가 가장 높으며, 최근에는 10MV 이상의 고에너지 광자선을 이용한 치료가 보편화되고 있다. 그러나 광핵반응에 의한 광중성자가 생성됨으로써 방사선 방호측면에서 많은 문제를 야기 시키고 있다. 이에 본 연구는 MCNPX 프로그램을 이용하여 치료실 내의 위치별 중성자의 특성을 분석하였다. 그 결과, 광중성자의 생성 개수도 선원 중심점을 기준으로 거리가 멀어질수록 감소됨을 알 수 있었다. 그리고 10MV에서 20MV로 에너지가 높아짐에 따른 열중성자와 속중성자의 비율은 큰 차이가 없었지만, 선원 중심점으로부터 거리가 이격될수록 열중성자의 비율이 높아지는 현상을 확인할 수 있었다.

BREEDING EXPERIMENT ON MUTATION INDUCTION BY IRRADIATION (2) Effects of X-ray and Thermal Neutron Irradiation on Dry Seeds of Chinese Cabbage and Radish.

  • Kim, Dawng Woo;Kim, Yang Choon;Cho, Mi Kyung
    • Journal of Plant Biology
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 1962
  • 1) Germination rate was rather irregular than decreasing as increasing dose of radiation and there were no differences between Kyong-Sam and Chuong-Bang of Chinese cabbage. 2) In R1 generation, abnormal leaves from seedling of irradiated seeds were observed. These were more apparent in X-ray irradiation than in thermal neutron. 3) Seedling height was inhibited with increasing dose of X-ray and thermal neutrons. Growth inhibition was more remarkable in X-ray than in thermal neutron. Kyong-Sam demonstrated more sensitivity than Chyong-Bang in both X-ray and thermal neutron. 4) Seedling height produced from seeds subjected to thermal neutrons showed small variation around its mean value, while in X-irradiation there was a greater deviaton from the mean value. 5) Fertility was decreased as increasing with dose, while the frequency of abortive pollen was increased. There were variability of the fertility and frequency of abortive pollen among plants or branches of a plant. 6) The mutants were obtained more in thermal neutron irradiation than in X-ray. The types of mutations obtained in Chinese radish of R2 generation were abnormal leaf, densely glowing leaf, degeneration in growing point and dwarf. The maximum frequency of phenotypic mutations was abnormal leaf mutation.

  • PDF