• 제목/요약/키워드: Thermal mitigation effect

검색결과 34건 처리시간 0.025초

대도시에 있어 냉섬의 유형별 온도완화 효과 -대구광역시의 사례 연구- (Effect of Cool Islands on the Thermal Mitigation in Urban Area -Case Study of Taegu Metropolitan City-)

  • 박인환;장갑수;김종용;박종화;서동조
    • 한국조경학회지
    • /
    • 제28권1호
    • /
    • pp.11-18
    • /
    • 2000
  • Taegu is notorious as hot and dry summer among Korea cities. One of the most important goals of the open space planning is to ameliorate urban climate of the city. The objective of this research is to evaluate the thermal mitigation effect of the cool islands in Taegu metropolitan city. Cool islands of this paper includes parks and rivers surrounded by or adjacent to urbanized areas. Based on the analysis of the thermal band of Landsat TM at May 17, 1997, the thermal mitigation effect of open spaces in the city could be summarized as follows ; Kumho river showed the largest mitigation effect in terms of the width of mitigation zone and temperature difference. Evaporation from wide water surface and evapo-transpiration from riparian grass land could bring into results. Significant mitigation effect of parks covered with forest can be observed. The temperature range of such parks were between 19.05$^{\circ}C$ and 19.44$^{\circ}C$ However, the thermal mitigation effect of Dalsung park and Apsan park was insignificant. The small size and high percentage of hard paving of the former and the relative low density of the residential areas adjacent to the latter could be the main reason. In conclusion, the thermal mitigation effect in urban ope spaces could be detectedby the employment of thermal band data of Landsat TM and GIS buffering technique.

  • PDF

열교환기에 대한 스케일 완화장치의 성능평가 (Performance Evaluation of Scale Mitigation Unit for Heat Exchangers)

  • 모정하;신상철;김경우
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1149-1156
    • /
    • 2001
  • The objective of the present study is to investigate the performance of electronic scale mitigation unit(ESMU), which reduces the amount of scale in a heat exchanger. The circular tube with diameter of 19mm and plate-and-frame heat exchangers with 20 thermal plates were used for the tests. In order to accelerate the rate of scale in a laboratory test, artificial hard water of 1000ppm(as CaCO$_3$) was recirculated at a flow rate of 5 lpm, 7 lpm, and 9 lpm throughout the tests. The effect of ESMU on the scale thickness and overall heat transfer coefficients was examined. The test results showed that the ESMU could reduce the scale deposits even in the acceleated test.

수지를 코팅한 준등방성 적층판에 대한 열변형 수치해석 (Numerical Investigation of Surface Deformations in Resin Coated Quasi-Isotropic Laminates due to Thermal Variance)

  • 김경표
    • 한국광학회지
    • /
    • 제25권4호
    • /
    • pp.207-215
    • /
    • 2014
  • 본 논문에서는 단방향 섬유복합재료를 사용하여 만든 준등방성 라미네이트 반사경내의 표면정밀도 문제에 대하여 기술하였다. 복합재 반사경내의 방사형 방향의 굽힘강성계수의 변화로 발생할 수 있는 국부적 표면변형의 형상/패턴 및 반사경 표면에 섬유패턴 효과를 감쇠시키기 위해 추가 수지층이 도포된 반사경에 온도변화 발생시 굽힘강성의 불균일성으로 인하여 발생하는 표면의 굴곡을 수치해석과 실험으로 검토하고 문제점 해결을 위한 방향을 제시하였다.

가로수와 바닥 포장 표면 알베도의 도시 열 환경 개선 효과 (Impact of Urban Thermal Environment Improvement by Street Trees and Pavement Surface Albedo)

  • 김나연;김은섭;윤석환;박정강;김상혁;남상준;제화준;이동근
    • 한국환경복원기술학회지
    • /
    • 제26권1호
    • /
    • pp.47-59
    • /
    • 2023
  • Due to climate change and urbanization, abnormally high temperatures and heat waves are expected to increase in urban and deteriorate thermal comfort. Planting of street trees and changing the albedo of urban surfaces are the strategies for mitigating the thermal environment of urban, and both of these strategies affect the exposure and blocking of radiative fluxes to pedestrians. After measuring the shortwave and longwave radiation according to the ground surface with different albedo and the presence of street trees using the CNR4 net radiometer, this study analyzed the relationship between this two strategies in terms of thermal environment mitigation by calculating the MRT(Mean Radiant Temperature) of each environment. As a result of comparing the difference between the downward shortwave radiation measured under the right tree and at the control, the shortwave radiation blocking effect of the tree increased as the downward shortwave radiation increased. During daytime hours (from 11 am to 3 pm), the MRT difference caused by the albedo difference(The albedo of the surfaces are 0.479 and 0.131, respectively.) on surfaces with no tree is approximately 3.58℃. When tree is present, the MRT difference caused by the albedo difference is approximately 0.49℃. In addition, in the case of the light-colored ground surface with high albedo, the surface temperature was low and the range of temperature change was lower than the surrounding surface with low albedo. This result shows that the urban thermal environment can be midigate through the planting of street trees, and that the ground surface with high albedo can be considered for short pedestrians. These results can be utilized in planning street and open space in urban by choosing surfaces with high albedo along with the shading effect of vegetation, considering the use by various users.

수공간 조성을 통한 도시의 열섬현상 저감효과 분석 - 대전시 노은지구 열매마을아파트를 중심으로 - (Analysis on the Mitigation Effects of Urban Heat Island through Creation of Water Space - A case study of Yeol-Mae village Apt in Daejeon's Noeun District -)

  • 박기용;이선우;심용주;황희연
    • KIEAE Journal
    • /
    • 제11권5호
    • /
    • pp.13-18
    • /
    • 2011
  • The overall aim of this study is to mitigate urban environmental problems. In particular, to reduce the effects of urban heat island phenomenon which is one of the urban planning perspective. This study focused on the analysis of the relationship between the urban heat island effect and the thermal and wind properties. To do this analysis, water space was virtually made at Yeol_Mae village Apt. Because it is very difficult to set up water space for the existing apartment complexes due to realistic constraints. This study, therefore has a strong sort of guidelines to create water space for newly formed city. It was based on the concept of virtual city through an in-depth analysis on reduction of urban heat island effects for the existing apartment along with creation of water space. To analysis site, Envi-Met Model developed by Michael Bruse was used. The results are as follows. The temperature went from 298.9K to 297.82K and The wind speed went from 1.42m/s to 1.43m/s. The results are slight in this study because creation of water space is planned to a small area of an apartment complex. But if the water space would be applied to a whole city, the mitigation effect of urban heat island would be bigger.

Effect of ZnO Nanoparticle Presence on SCC Mitigation in Alloy 600 in a Simulated Pressurized Water Reactors Environment

  • Sung-Min Kim;Woon Young Lee;Sekown Oh;Sang-Yul Lee
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.401-411
    • /
    • 2023
  • This study investigates the synthesis, characterization, and application of zinc oxide (ZnO) nanoparticles for corrosion resistance and stress corrosion cracking (SCC) mitigation in high-temperature and high-pressure environments. The ZnO nanoparticles are synthesized using plasma discharge in water, resulting in rod-shaped particles with a hexagonal crystal structure. The ZnO nanoparticles are applied to Alloy 600 tubes in simulated nuclear power plant atmospheres to evaluate their effectiveness. X-ray diffraction and X-ray photoelectron spectroscopy analysis reveals the formation of thermodynamically stable ZnCr2O4and ZnFe2O4 spinel phases with a depth of approximately 35 nm on the surface after 240 hours of treatment. Stress corrosion cracking (SCC) mitigation experiments reveal that ZnO treatment enhances thermal and mechanical stability. The ZnO-treated specimens exhibit increased maximum temperature tolerance up to 310 ℃ and higher-pressure resistance up to 60 bar compared to non-treated ZnO samples. Measurements of crack length indicate reduced crack propagation in ZnO-treated specimens. The formation of thermodynamically stable Zn spinel structures on the surface of Alloy 600 and the subsequent improvements in surface properties contribute to the enhanced durability and performance of the material in challenging high-temperature and high-pressure environments. These findings have significant implications for the development of corrosion-resistant materials and the mitigation of stress corrosion cracking in various industries.

멀티 코어 프로세서의 온도관리를 위한 방안 연구 및 열-인식 태스크 스케줄링 (Thermal Management for Multi-core Processor and Prototyping Thermal-aware Task Scheduler)

  • 최정환
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제35권7호
    • /
    • pp.354-360
    • /
    • 2008
  • 최신의 마이크로프로세서 설계에서는 전력 관련 문제들이 중요한 고려사항이 되었다. 온-칩(On-chip) 온도 상승은 이와 관련하여 중요한 요소로 부각되었다. 이를 적절하게 처리하지 않을 경우 냉각 비용과 칩 신뢰성에 부정적인 결과를 초래한다. 이 논문에서 우리는 시간적/공간적인 핫 스폿(Hot spot) 완화를 위한 설계들과 열 시간 상수, 작업부하 변동, 마이크로프로세서의 전력 분배 사이의 보편적인 상충관계(Trade off)들을 조사한다. 우리의 방안은 작업부하의 실행위치/순서를 변경하고 동시실행 스레드의 수를 조절하여 시스템의 공간 및 시간적인 열 틈새(Heat slack)에 영향을 줌으로써, 운영체계(OS)와 이미 시스템에 존재하는 하드웨어의 지원만으로 적절한 시간제한내에 작업부하를 조절함으로써 온-칩 온도를 낮출 수 있다.

열수지를 활용한 서울시 열환경 개선을 위한 공간 유형화 (Spatial Typification based on Heat Balance for Improving Thermal Environment in Seoul)

  • 권유진;안새결;이동근;윤은주;성선용;이기승
    • 국토계획
    • /
    • 제53권7호
    • /
    • pp.109-126
    • /
    • 2018
  • The purpose of this study is to identify the spatial types for thermal environment improvement considering heat flux and its spatial context through empirical orthodox formulas. First, k-means clustering was used to classify values of three kinds of heat flux - latent, sensible and storage heat. Next, from the k-means clustering, we defined a type of thermal environment (type LHL) where improvement is needed for more comfortable and pleasant thermal environment in the city, among the eight types. Lastly, we compared and analyzed the characteristics of each classified thermal environmental types based on land cover types. From the study, we found that the ratio of impervious surfaces, roads, and buildings of the type LHL is higher than those of the type HLH (relatively thermal comfort environment). In order to improve the thermal environment, the following contents are proposed to urban planners and designers depending on the results of the study. a) Increase the green zone rate by 10% to reduce sensible heat; b) Reduce the percentage of impermeable surfaces and roads by 10% ; c) Latent heat increases when water and green spaces are expanded. This study will help to establish a minimum criterion for a land cover rate for the improvement of the urban thermal environment and a standard index for the thermal environmental improvement can be derived.

사례연구를 통한 개발도상국 민자발전사업 리스크 경감방안 (Risk Mitigation for Independent Power Producer Projects in Developing Countries Based on Case Studies)

  • 윤영일;유호선;여영구
    • 플랜트 저널
    • /
    • 제9권1호
    • /
    • pp.50-57
    • /
    • 2013
  • 본 연구에서는 개발도상국 민자발전사업의 개발단계에서 발생할 수 있는 리스크를 사업소재국, 사업주 및 시장으로 분류하여 해당 항목별 주요 리스크를 조사하고, 근래 한전 및 발전회사가 수행한 대표적인 3개 사업에 적용하여 구체적인 경감방안을 도출하고자 하였다. 개발도상국에서 민자발전사업 추진 시 전력구매처로서 신용이 부족하여 수출신용기관과 국제개발금융기구의 사업 참여가 어려운 경우, 국가신용이 양호한 주변국으로 전력판매처를 다변화하여 시장 리스크를 경감시키는 동시에 사업소재국 리스크를 경감시켜야 하며 20~30년에 걸쳐 장기간 운영해야 하는 화력발전사업의 경우 운영기간이 경과할수록 열효율도 저하되는 것을 감안하여, 설비운영 경과에 따른 성능저하 영향을 충분히 반영하여 기대수익을 보존하고 우리 기업의 손실을 최소화해야 한다.

  • PDF

도시공원 및 주변환경의 특성이 도시공간의 온도저감에 미치는 영향 (Heat Mitigation Effects of Urban Space based on the Characteristics of Parks and their Surrounding Environment)

  • 서정은;오규식
    • 한국환경복원기술학회지
    • /
    • 제23권5호
    • /
    • pp.1-14
    • /
    • 2020
  • In order to improve the urban thermal environment, efforts are being made to increase green areas in cities that include park construction, planting, and green roofing. Among these efforts, urban parks play an important role not only in improving the urban thermal environment, but also in terms of ecosystem services (serving as resting places for citizens, providing cleaner air quality, reducing noise, etc.). Therefore, the purpose of this study is to suggest planning and management guidelines for urban parks that are effective in improving the thermal environment, by analyzing the urban surface temperature reduction performance of urban parks. To do this, first, land surface temperature was calculated by using Landsat 8 images. Second, the PCI (Park Cool Island) index was calculated to identify the temperature reduction performance of urban parks. Third, the characteristics of parks (area, shape, vegetation) and the surrounding spatial characteristics (land cover, building-related variables, etc.) were identified. Finally, the relationship between the PCI indices (PCI scale, PCI effect, PCI intensity) and the characteristics of the parks and their surroundings were analyzed. The results revealed that the parks consisting of a larger area, simple shape, and higher tree coverage ratio had increased PCI performance, and were advantageous for improving the urban thermal environment. Meanwhile, PCI performance was found to have decreased in areas with a higher impermeable area ratio and building coverage ratio. The outcomes of this study can be used to identify priority areas for planning and management of urban parks and can also be utilized as planning and management guidelines for improving urban thermal environment.