• Title/Summary/Keyword: Thermal low-pressure

Search Result 602, Processing Time 0.024 seconds

Performance of a direct methanol fuel cell (DMFCs)Using Nation 115 (Nafion 115를 사용한 DMFC MEA 의 성능실험)

  • Choi, Hoon;Hwang, Yong-Sheen;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.43-46
    • /
    • 2007
  • To find out the optimum design of hydrogen storage and supply tank using Metal Hydride (briefly MH) and to make clear the performance characteristics under various conditions are our research purpose. In order to use the low-temperature exhaust heat, $LaNi_{4.7}Al_{0.3}$ which operates under the low pressure of 1MPa is chosen, and we measure the basic properties, namely density, specific heat, PCT(Pressure-Concentration-Temperature) characteristic, and effective thermal conductivity. Then, a numerical calculation model of hydrogen storage using MH alloy is suggested and this thermal diffusion equation of model is solved by the backward difference method. This calculation results rate compared with the experimental results of the systems which installed 1kg MH alloy and, it is found out that our calculation model can well predict the experimental results. By the experimental using MH alloy, it is recognized that the hydrogen flow rate can control by the step adjustment of brine temperature.

  • PDF

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

Synthesis of Nano-Sized Cu Powder by PVA Solution Method and Thermal Characteristics of Sintered Cu Powder Compacts (PVA 용액법을 통한 나노 Cu 분말합성 및 소결체의 열적 특성)

  • Oh, Bok-Hyun;Ma, Chung-Il;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.93-98
    • /
    • 2020
  • Effective control of the heat generated from electronics and semiconductor devices requires a high thermal conductivity and a low thermal expansion coefficient appropriate for devices or modules. A method of reducing the thermal expansion coefficient of Cu has been suggested wherein a ceramic filler having a low thermal expansion coefficient is applied to Cu, which has high thermal conductivity. In this study, using pressureless sintering rather than costly pressure sintering, a polymer solution synthesis method was used to make nano-sized Cu powder for application to Cu matrix with an AlN filler. Due to the low sinterability, the sintered Cu prepared from commercial Cu powder included large pores inside the sintered bodies. A sintered Cu body with Zn, as a liquid phase sintering agent, was prepared by the polymer solution synthesis method for exclusion of pores, which affect thermal conductivity and thermal expansion. The pressureless sintered Cu bodies including Zn showed higher thermal conductivity (180 W/m·K) and lower thermal expansion coefficient (15.8×10-6/℃) than did the monolithic synthesized Cu sintered body.

A study for steam energy savings by the thermal vapor recompressor (에너지절감을 위한 폐열회수용 열압축기에 대한 고찰)

  • Lee, Jae-Geun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.3
    • /
    • pp.50-54
    • /
    • 2008
  • Recently most companies require various type of energy sources, in order to be more energy efficient in their plant due to the increasing current oil price. So, the multi-national companies are shaping ideas how to reduce energy costs and use substitute energy. The purpose of this study Is to attempt to save energy by making more valuable high pressure steam through TVR(Thermal Vapor Recompressor) from the surplus low pressure steam of HRB(Heat Recovery Boiler) in sulfuric acid plant.

  • PDF

Thermal Analysis of a Combined Absorption Cycle of Cogeneration of Power and Cooling for Use of Low Temperature Source (저온 열원의 활용을 위한 흡수 발전/냉각 복합 사이클의 열적 해석)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.413-420
    • /
    • 2011
  • Thermodynamic cycles using binary mixtures as working fluids offer a high potential for utilization of low-temperature heat sources. This paper presents a thermodynamic performance analysis of Goswami cycle which was recently suggested to produce power and cooling simultaneously and combines the Rankine cycle and absorption refrigeration cycle by using ammoniawater mixture as working fluid. Effects of the system parameters such as concentration of ammonia and turbine inlet pressure on the system are parametrically investigated. Results show that refrigeration capacity or thermal efficiency has an optimum value with respect to ammonia concentration as well as to turbine inlet pressure.

Development of a Chip Bonding Technology for Plastic Film LCDs

  • Park, S.K.;Han, J.I.;Kim, W.K.;Kwak, M.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.89-90
    • /
    • 2000
  • A new technology realizing interconnection between Plastic Film LCDs panel and a driving circuit was developed under the processing condition of low temperature and pressure with ACFs developed for Plastic Film LCDs. The conduction failure of interconnection of the two resulted from elasticity, low thermal resistance and high thermal expansion of plastic substrates. Conductive particles with elasticity similar to the plastic substrate did not damaged a ITO electrode on plastic substrates, and low temperature and pressure process also did not deform the surface of plastic substrates. As a result highly reliable interconnection with minimum contact resistance was accomplished.

  • PDF

Thermodynamic Performance Analysis of Regenerative Organic Rankine Cycle using Turbine Bleeding (터빈 추기를 이용한 재생 유기랭킨사이클의 열역학적 성능 해석)

  • KIM, KYOUNG HOON;HWANG, SEON;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.377-385
    • /
    • 2015
  • This paper presents a thermodynamic performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding to utilize low-grade finite thermal energy. Refrigerant R245fa was selected as the working fluid. Special attention is paid to the effects of the turbine bleeding pressure and the turbine bleed fraction on the thermodynamic performance of the system such as net power production and thermal efficiency. Results show that the thermal efficiency has an optimum value with respect to the turbine bleeding pressure and the net power production is lower than the basic ORC while the thermal efficiency is higher.

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

A study on the operation conditon of Effective Energy Recovery and Greenhouse gas Reduction by the facility using Waste / Biomass fuel (폐기물 및 바이오매스 연료 사용시설의 효율적 에너지회수 및 온실가스 감축을 위한 운전조건에 관한 연구)

  • Joo, Won Hyeog;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • The economic issue of the period of return versus investment has emerged to efficiently utilize the thermal energy of public resource recovery facilities using waste and private thermal source facilities using BIO-SRF. Accordingly, the optimum temperature and pressure facilities are required beyond the traditional designed, constructed and operated. In this study, we analyzed current energy output by different heat and pressure model in domestic facilities, and calculated the characteristics of green-house gas emission. In order to, utilize the thermal energy producing facilities using waste and biomass fuel more efficiently, it is temperature and pressure, which will lead to more lucrative investment and return as well.

A Study on the Problem-Solving Method and Thermal Efficiency Properties at the Time of High Expansion Realization in a 4-Cycle Diesel Engine (4사이클 디젤기관에서 고팽창 실현 시 문제점 해결방안과 열효율 특성에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.835-842
    • /
    • 2009
  • The present thesis carried out a research on a compression pressure's reduction phenomenon and its countermeasure according to the thermal efficiency improvement method by a Miller method in 4-cycle low speed diesel engine. In case of retardation of intake valve closing time in a engine, the theoretical heat efficiency shows a remarkably reducing trend when a compression ratio is not compensated. Accordingly, the thermal efficiency showed an increasing trend in case of compensating the compression ratio. Especially, it could be understood that the theoretical heat efficiency at near ABDC $100^{\circ}$ of intake valve closing time in case of compensation of the compression ratio was improved by around 25.1%, and the mean effective pressure was also increased by around 18.6%. Also, as the retardation of intake valve closing time increases, air quantity becomes insufficient due to a backflow phenomenon of intake air and thus thermal efficiency was decreased in a high load operation domain. The solving method of this problem is possible by supercharge. Therefore, in order to improve thermal efficiency by retardation of ntake valve closing time, the thermal efficiency improvement according to low compression is possible when there are a compensation device of a compression ratio and a supercharge device. This is a problem-solving method of low compression and high expansion cycle.