• Title/Summary/Keyword: Thermal gravimetric analysis

Search Result 154, Processing Time 0.028 seconds

Characteristic Studies of Plasma Treated unidirectional Hildegardia Populifolia Fabric

  • Prasad, C. Venkata;Lee, D.W.;Sudhakara, P.;Jagadeesh, D.;Kim, B.S.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.54-59
    • /
    • 2013
  • This study deals with effect of plasma treatment on the properties of unidirectional ligno cellulosic fabric Hildegardia Populofolia (HDP) fabric. Thermal stability of the fabric was determined by differential scanning calorimetry (DSC) and Thermo gravimetric analysis (DSC). Morphological properties was analyzed by SEM analysis and found that the surface was rough upon plasma treatment which provides good interfacial adhesion with matrix during composite fabrication. Thermal stability and mechanical properties of the plasma treated fabric slightly increases compare to alkali and untreated fabric. It was observed that tensile properties of the fabric increases upon plasma treatment due to the formation of rough surface. SEM analysis indicates formation of rough surface on plasma treatment which helps in increasing the interfacial interaction between the matrix (hydrophobic) and fabric (hydrophilic).

Modeling of thermal fluidized desorption for diesel-oil contaminated soils (Diesel-oil에 오염된 토양의 유동상 열탈착 모델링)

  • 이상화;김병욱;이상득;박달근;이중기
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.137-147
    • /
    • 1999
  • Fluidized-bed thermal desorber coupled with a heat pipe was investigated for the remediation of soil contaminated with diesel oils. Thermal gravimetric analysis by Cahn-balance indicated that the desorption of diesel oils from the soil particles was mainly governed by the internal diffusion at low concentration of less than 0.5 wt. % of oils in the soil particles. In fluidized-bed experiments. increase of fluidizing gas velocity reduced the residual oils of the contaminated soils, the increase of soil feed rate decreased efficiency of fluidized-bed desorber. A mathematical model was developed by incorporating Fickian diffusion kinetics into the Kunii-Levenspiel model Simulation results showed reasonable agreement for the performance of fluidized-bed thermal desorber.

  • PDF

Fire Characteristics Comparison of Resol-type Phenolic Resin for Interial Materials of Passenger Train (철도차량용 레졸계 페놀수지의 내열특성 비교)

  • Lee Cheul-kyu;Lee Duck Hee;Jung Woo Sung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.277-283
    • /
    • 2004
  • The time to ignition, heat release rate characteristics and carbon monoxide yield of fiber reinforced and sandwich phenol resin were investigated with cone calorimeter. The fire characteristics of unsaturated polyester, mostly being applied to the existing passenger train, and phenolic resin were compared. Thermal gravimetric analysis(TGA) was used to monitor the degree of thermal decomposition for the phenolic resin. According to the cone calorimeter data, the time to ignition, heat release rate and CO yield was faster and higher as the external heat flux increase. Under the same heat flux, the time to ignition of sandwich type phenolic resin was shorter than that of fiber reinforced. The result of comparison between unsaturated polyester and phenolic resin was that phenolic resin was shown to have better fire resistance than that of unsaturated polyester.

  • PDF

The effect of hexamethylenetetramine contents and cure properties on friction characteristics of phenolic resin (페놀수지의 마찰특성에 미치는 HEXA의 함량 및 경화도의 영향)

  • Kim, Dae-Kyeun;Jang, Ho;Yoon, Ho-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.49-56
    • /
    • 1999
  • A material was formulated with Phenol novolac and HEXA only. The cure kinetics and thermal characteristics of phenol novolac with various HEXA contents were peformed by differential scanning calorimetry and thermal gravimetric analysis. All kinetic parameters of the curing reaction including the reaction order, activation energy, and rate constant were calculated and reported. The results indicate that the curing reaction goes through an autocatalytic kinetic mechanism. The friction and wear characteristics of this material were determined using friction material testing machine. The friction coefficient of phenol novolac with various HEXA contents was determined using the PV(pressure & velocity) factor. The most stable and highest friction coefficient with a various pressure and velocity condition was found at HEXA 10 wt.% material. The specific wear rate per unit sliding distance with a various HEXA contents was reported.

  • PDF

Influence of Plasticizers on Mechanical, Thermal, and Migration Properties of Poly(Lactic Acid)/Zeolite Composites

  • Qin, Pei;Jung, Hyun-Mo;Choi, Dong-Soo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.2_1
    • /
    • pp.79-89
    • /
    • 2021
  • Poly(lactic acid) (PLA) is considered as one of the most promising bio-based polymers due to its high strength, high modulus, good processability, transparency after processing, and commercial availability. This study aimed to investigate the mechanical, thermal, and migration properties of poly(lactic acid)/zeolite (10 phr) composites prepared with various biocompatible plasticizers, such as triethyl citrate(TEC), tributyl citrate(TBC), and poly(ethylene glycol)(PEG400), through differential scanning calorimetry(DSC), thermo-gravimetric analysis(TGA) and standard tensile testing. The incorporation of PEG400 significantly increased the elongation at break, and DSC results showed that the addition of plasticizers drastically decreased the Tg of PLA/zeolite composites and improved the melt flow and processability. Besides, it was found from TGA results that PLA/zeolites composites plasticized by TEC and TBC were more easily to be thermally degraded than the composites plasticized by PEG400.

Preparation of Flammability Artificial Hair based on Super Engineering Plastic (슈퍼엔지니어링 플라스틱 기반 난연성 가발사 제조)

  • Choi, Hyun-Jung;Gong, Da Jeong;Youn, Chulmin;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Super engineering plastic(SEP) are applied to high performance and high value industries due to their excellent mechanical properties and high continuous operating temperature. Among them, PES and PEI are amorphous SEPs, and have the advantages of high flexibility, mechanical properties, transparency, and thermal stability. In this study, polyethersulfone(PES) and polyetherimide(PEI) fibers were manufactured to produce flame retardant artificial hair. PES and PEI fibers prepared through a melt-spinning process at a high temperature of 360 to 420℃. They are compared with commercial artificial hair by thermal gravimetric analysis(TGA), linear density, tenacity, and limited oxygen index(LOI) analysis. PES and PEI fibers have similar linear density and tenacity to commercial artificial hair, while their thermal stability and flame retardant are excellent. In particular, flame retardant was analyzed through LOI value and PES was 35.1%, which is superior to commercial artificial hair PET/Br(28.2%) and PET/P(20.2%). Therefore, PES and PEI are suitable as artificial hair for flame retardant.

Precise Determination of Silicon in Ceramic Reference Materials by Prompt Gamma Activation Analysis at JRR-3

  • Miura, Tsutomu;Matsue, Hideaki
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.299-303
    • /
    • 2016
  • Prompt gamma activation analysis using a thermal neutron-guided beam at Japan Atomic Energy Agency JRR-3M was applied for the precise determination of Si in silicon nitride ceramic reference materials [Japan Ceramic Reference Material (JCRM) R 003]. In this study, the standard addition method coupled with internal standard was used for the nondestructive determination of Si in the sample. Cadmium was used as internal standard to obtain the linear calibration curves and to compensate for the neutron beam variability. The analytical result of determining Si in JCRM R 003 silicon nitride fine powder ceramic reference materials using prompt gamma activation analysis was in good agreement with that obtained by classical gravimetric analysis. The relative expanded measurement uncertainty (k = 2) associated with the determined value was 2.4%.

Preparation of Wood Adhesives from the Rice Powder and pMDIs; Characterizations of Their Properties

  • Lee, Sang-Min;Joo, Ji-Hye;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.607-615
    • /
    • 2015
  • To investigate the adhesion effect of various kinds and contents of polymeric methylene diphenyl diisocyanates (pMDIs) on adhesion performance, wood adhesives (A-1~5) were synthesized and characterized. As results, when the amount of pMDI increased in adhesives, the dry tensile strength was found to be proportionally increased sustaining at around $16.0{\sim}21.6kgf/cm^2$. The polyurethane (PU) resin, which used M11S as a source of pMDI showed the best wet tensile strength at $11.9kgf/cm^2$ and cyclic boil tensile strength at $8.1kgf/cm^2$, which satisfied the requirement of over $7kgf/cm^2$. Thermal properties of the rice powder (RP) based polyurethane resins were characterized by differential scanning calorimetry (DSC) and Thermal gravimetric analysis (TGA). Thermal stability of polyurethane resins increased to $250^{\circ}C$ with adding pMDIs. The more pMDI (M5S) was added to adhesive, the higher thermal stability of the resin was observed by TGA.

Nanostructured Hydroxyapatite for Biomedical Applications: From Powder to Bioceramic

  • Eslami, Hossein;Tahriri, Mohammadreza;Moztarzadeh, Fathollah;Bader, Rizwan;Tayebi, Lobat
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.597-607
    • /
    • 2018
  • In this study, a wet chemical method was used to synthesize nanostructured hydroxyapatite for biomedical applications. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials with a sodium hydroxide solution as an agent for pH adjustment. Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, differential thermal analysis, thermal gravimetric analysis, atomic absorption spectroscopy, and ethylenediaminetetraacetic acid (EDTA) titration analysis were used to characterize the synthesized powders. Having been uniaxially pressed, the powders formed a disk-like shape. The sinterability and electrical properties of the samples were examined, and the three-point bending test allowed for the measurement of their mechanical properties. Sedimentation analysis was used to analyze the slurry ability of hydroxyapatite. As in-vitro biological properties of the samples, biocompatibility and cytotoxicity were assessed using osteoblast-like cells and the L929 cell line, respectively. Solubility was assessed by employing a simulated body fluid.

Quantitative Analysis of Silicone Oil in Antifoaming Agent (소포제중 실리콘 오일의 함량에 대한 분석)

  • Kim, Kyeong Sook;Yang, Seug Ran;LIm, Chun Sik;Park, Hyun Joo
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.4
    • /
    • pp.337-342
    • /
    • 2000
  • Many kinds of experiments were performed for the quality control of antifoaming agents used in thermal power pIants of KEPCO. We tried to establish more convenient ans more accurate quantitative analytical method to determine the amount of silicone oil in silicone oil type antifoaming agent regardless of the amount and/or the type of involved surface active agents. First, the amount of silicone oil was measured by gravimetric method or centrifugal method using very simple apparatus, and then was compared to the results of FT-lR spectroscopy. The centrifugal method was turned out a poor method depending upon the recovery test and virtual experiments. Some antifoaming agents showed very similar results between gravimetric method and spectroscopic methods, and the others gave very different results. We concluded that FT-lR spectroscopy is the most convenient and reliable methodto determine the amounts of silicone oil in the antifoaming agents.

  • PDF