• Title/Summary/Keyword: Thermal front

Search Result 308, Processing Time 0.022 seconds

Analysis of Thermal Control Performance of Variable Conductance Heat Pipe with Axial Grooves (축방향 그루브형 가변전열 히트파이프의 열제어 특성)

  • Park, Y.S.;Kim, D.E.;Byon, G.S.;Suh, J.S.;Lee, K.W.;Park, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1651-1656
    • /
    • 2003
  • The present study has been conducted to analytically investigate the thermal control performance of variable conductance heat pipe(YCHP) with axial grooves. The condenser port of the YCHP is occupied by a inert gas in which the concentration of gas is varied with the operation temperature and the heat transport capacity is thus varied with the operating temperature due to the variation of inert gas concentration. In this study, numerical evaluation for the thermal control of the YCHP with axial grooves is made from the 1st order diffusion model that considers the diffusive expansion of inert gas by concentration gradient. Ammonia is used as a working fluid and Nitrogen as a control gas in the Aluminum tube. As a result, the thermal performance of YCHP based on diffusion model has been compared with that of YCHP from flat front model. Additionally, it is found that the concentration of inert gas is distributed in the condenser region of YCHP with axial grooves.

  • PDF

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.

Conjugate Heat Transfer Analysis of High Pressure Turbine with Secondary Flow Path and Thermal Barrier Coating (2차유로 및 열차폐 코팅을 고려한 고압터빈의 열유동 복합해석)

  • Kang, Young-Seok;Rhee, Dong Ho;Cha, Bong Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.37-44
    • /
    • 2015
  • Conjugate heat analysis on a high pressure turbine stage including secondary flow paths has been carried out. The secondary flow paths were designed to be located in front of the nozzle and between the nozzle and rotor domains. Thermal boundary conditions such as empirical based temperature or heat transfer coefficient were specified at nozzle and rotor solid domains. To create heat transfer interface between the nozzle solid domain and the rotor fluid domain, frozen rotor with automatic pitch control was used assuming that there is little temperature variation along the circumferential direction at the nozzle solid and rotor fluid domain interface. The simulation results showed that secondary flow injected from the secondary flow path not only prevents main flow from penetrating into the secondary flow path, but also effectively cools down the nozzle and rotor surfaces. Also thermal barrier coating with different thickness was numerically implemented on the nozzle surface. The thermal barrier coating further reduces temperature gradient over the entire nozzle surface as well as the overall temperature level.

N-type Silicon Solar Cell Based on Passivation Layer Grown by Rapid Thermal Oxidation (Rapid Thermal Oxidation 기반의 표면 보호막을 이용한 n-type 실리콘 태양전지의 제작과 전기적 특성 분석)

  • Ryu, Kyungsun;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.18-21
    • /
    • 2013
  • $SiO_2$ layer grown by rapid thermal oxidation and $SiN_x$ layer were used for passivating the surface of n-type silicon solar cell, instead of only $SiN_x$ layer generally used in photovoltaic industry. The rapid thermal oxidation provides the reduction of processing time and avoids bulk life time degradation during the processing. Improvement of 30 mV in Voc and $2.7mA/cm^2$ in Jsc was obtained by applying these two layers. This improvement led to fabrication of a large area ($239cm^2$) n-type solar cell with 17.34% efficiency. Internal quantum efficiency measurement indicates that the improvement comes from the front side passivation, but not the rear side, by using $SiO_2/SiN_x$ stack.

Characteristics of Thermal Efficiency with Changing Distances Between Tubes for Heat Exchanger (열교환기 관사이의 거리변화에 대한 열효율 특성)

  • Kim, Jong-Min;Lee, Jae-Park;Lee, Seung-Ro;Lee, Chang-Eon;Kum, Sung-Min
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.177-181
    • /
    • 2010
  • There are various types of heat exchanger by its purpose and usage, but the important thing is making smaller size of heat exchanger with increasing of the performance of heat exchanger. However, when a burner exists in front of a heat exchanger like boiler, the thermal efficiency of heat exchanger is not only important, but the characteristics of pollutant emission should be considered. Therefore, in this study, a circular tube type of heat exchanger in front of premixed burne, which has a shorter of flame length than that of non-premixed burner and can control $NO_x$ and CO emission by adjustment of equivalence ratio, was installed. Consequently, characteristics of $NO_x$ and CO emission and thermal efficiency of heat exchanger were studied with changing distances between tubes and equivalence ratio, experimentally.

Contact Formation Between Ag and Si With Lead-Free Frits in Ag Pastes For Si Solar Cells (실리콘 태양전지용 Ag pastes 에서의 무연 프릿에 따른 Ag, Si간 접촉 형성)

  • Kim, Dongsun;Hwang, Seongjin;Kim, Jongwoo;Lee, Jungki;Kim, Hyungsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.2-61.2
    • /
    • 2010
  • Ag thick-film has usually been used for the front electrode of Si solar cells with the outstanding electrical properties. Ag paste consists of Ag powers, vehicles, frits and additives. Ag paste has broadly been screen-printed on the front side of Si wafer with the merits of low cost and simplicity. The optimal contact formation between Ag electrodes and Si wafer in the front electrode during a fast firing has been considered as the key factor for high efficiency. Although the content of frit in Ag pastes is less than 5wt%, it can profoundly influence the contact formation between Ag and Si under the fast firing. In this study, the effects of lead-free frits on the contacts between Ag and Si were studied with the thermal properties and compositions of various frits. Our experimental results showed that the electrical properties of cells were related to the interface structures between Ag and Si. It was found that current path of electrons from Si to Ag would be possible through the tunneling mechanism assisted by tens of nano-Ag recrystals on $n^+$ emitter as well as Ag recrystals penetrated into $n^+$ emitter layers. These preliminary studies will be helpful for designing the proper frits for the Ag pastes with considering the properties of various Si wafers.

  • PDF

Predicting Extreme-Thickness of Phase Fronts in HMX- and Hydrocarbon-based Propellants (로켓 추진제의 익스트림-스케일 상면 두께 예측)

  • Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.82-88
    • /
    • 2009
  • The structure of steady wave system is considered which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. With its theoretical basis in one-dimensional continuum shock structure analysis, the present approach estimates the micro-width of waves associated with phase transformation phenomena, n-heptane is selected as the hydrocarbon fuel for evaporation and condensation analysis while HMX is used for melting and freezing analysis of solid rocket propellant. The estimated thickness of evaporation - condensation front of n-heptane is on the order of $10^{-2}$ micron while the HMX melting - freezing front thickness is estimated at 1 micron.

Thermohaline Structure of the Shelf Front in the Korea Strait in Early Winter (초겨울 大韓海峽에서 形成되는 淺海前線의 構造)

  • Lee, Jae Chul;Na, Jung Yul;Chang, Sun-Duck
    • 한국해양학회지
    • /
    • v.19 no.1
    • /
    • pp.56-67
    • /
    • 1984
  • Mesoscale thermohaline structures of the meandering front in the Korea Strait during November 1976, 1980 and 1982 are studied by means of closely spaced oceanographic observations and the satellite infrared images. Strong thermal and salinity fronts coincide each other and show a wavelike meander motion with wavelengths of 40-60km and amplitudes of, 15-20km. Salinity minimum band of less than 33.0 is found along the onshore edge of the front. Width of the frontal zone corresponds approximately to the internal radius of deformation (R=5-10km) and the slope of density interface is confined to about 2R. A series of satellite infrared images with the interval of 4-5 days show a noticeable growth of frontal meander over the flat shelf west of the Korea Strait. Possible mechanisms of frontal meander and its growth are discussed.

  • PDF

ANALYSIS OF THE ENHANCEMENT OF COOLING EFFICIENCY OF A VEHICLE IN THE ENGINE ROOM (차량 엔진룸에서의 냉각효율 향상에 관한 해석)

  • Lee Dong-Ryul
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.55-62
    • /
    • 2005
  • Flow and temperature fields of a mid-size vehicle engine room are examined numerically to analyze the enhancement of cooling efficiency of several different design cases in a front body shape. The wall temperatures of a radiator and an engine parte are utilized to predict the effects of engine cooling on the thermal environment and the cooling efficiency in an engine room. The analyzed results are the mass flow rate at the upper and lower inlets, in the radiator, and the condenser. It is shown that the shape of the front end, lay-out of the engine parts, and the presence of the undercover greatly influence the flow and temperature fields, and the enhancement of cooling efficiency in the engine room.

Analysis of Aluminum Powder Densification by Continuous Front Extrusion-Equal Channel Angular Pressing (등통로각압축이 결합된 압출 공정에 의한 알루미늄 분말의 치밀화 거동)

  • Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.204-209
    • /
    • 2008
  • Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at $200^{\circ}C$. Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.