• Title/Summary/Keyword: Thermal force

Search Result 908, Processing Time 0.033 seconds

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment (CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.126-139
    • /
    • 1994
  • Best-estimate thermal-hydraulic codes, CATHARE2 V1.2 and RELAP5/MOD3, hate been assessed against the BETHSY 6.2 tc six-inch cold leg break loss-of-coolant accident (LOCA) test. Main objective is to analyze the overall capabilities of the two codes on physical phenomena of concern during the small break LOCA i.e. two-phase critical flow, depressurization, core water level de-pression, loop seal clearing, liquid holdup, etc. The calculation results show that the too codes predict well both in the occurrences and trends of major two-phase flow phenomena observed. Especially, the CATHARE2 calculations show better agreements with the experimental data. However, the two codes, in common, show some deviations in the predictions of loop seal clearing, collapsed core water level after the loop seal clearing, and accumulator injection behaviors. The discrepancies found from the comprision with the experimental data are larger in the RELAP5 results than in the CATHARE2. To analyze the deviations of the two code predictions in detail, several sensitivity calculations have been performed. In addition to the change of two-phase discharge coefficients for the break junction, fine nodalization and some corrections of the interphase drag term are made. For CATHARE2, the change of interphase drag force improves the mass distribution in the primary side. And the prediction of SG pressure is improved by the modification of boundary conditions. For RELAP5, any single input change doesn't improve the whole result and it is found that the interphase drag model has still large uncertainties.

  • PDF

A Study on Characteristics of Fluid Flow on Direct Absorption Receiver from Solar Energy (태양(太陽)에너지의 직접흡수식(直接吸收式) 수열판상(受熱板上)의 유체유동특성(流體流動特性)에 관(關)한 연구(硏究))

  • Pak, Ee-Tong
    • Solar Energy
    • /
    • v.4 no.2
    • /
    • pp.13-28
    • /
    • 1984
  • Direct Absorption Receiver and Thermal Storage System is a complex problem. This paper describes only characteristic of fluid flow on the receiver. The fluid thicknesses of Molten Salts (Melting Point : $397^{\circ}C$) flowing on the receiver of modified protopype ($10m{\times}10m$) were calculated theorectically, changing the receiver slope from 60 degree to 85 degree (5 steps). The receiver temperatures were $430^{\circ}C$ at the top part and $950^{\circ}C$ at the low part. The flow thickness of the Molten Salts at the top part of the receiver are around 1.9mm in the case of maximum insolution ($50{\times}10^6$juoule/sec; 58.898kg/sec of flow rate) and 2.0mm at the low part. In the case of 3/10 of maximum insolation (flow rate = 17.669kg/sec) the flow thickness at the top part are around 0.9mm and 0.4mm at the low part, and in the case of 1/10 of maximum insolation (flow rate = 5.889 kg/see) the flow thickness at the top part are around 0.6mm and 0.3mm at the low part. From experimental measurements of a normal fresh water thickness flowing on the model plate ($12.7cm{\times}111.76cm$), around 0.8mm at the top part of the plate and around 0.7mm at the low part were obtained in the case of maximum insolation (flow rate = 0.12496 kg/see). In the case of 3/10 (flow rate = 0.03748 kg/see) and 1/10 (flow rate = 0.012496 kg/see) of maximum insolation, around 0.5mm and 0.4mm at the top part, and around 0.3mm and 0.2mm at the low part were obtained respectively. The reason why the thickness of the Molten Salts increase at the low part of the receiver only in case of maximum insolation is that decreasing rate of the viscosity of the Molten Salts is larger than decreasing rate of the density of the Molten Salts during temperature increase from the top to the low receiver plate and decrease of the fluid velocity in accordance with continuity principle. In all cases without the above maximum insolation, the thickness of the Molten Salts and the fresh water decreased at the low part of the plate because of gravity force effects rather than friction effects and of continuity principle. All simillar flow patterns were obtained through all cases of the insolation making an exception of only maximum insolation.

  • PDF

Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment

  • Lee, Jung-Jin;Kang, Cheol-Kyun;Oh, Ju-Won;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • PURPOSE. This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS. Sixty specimens were cut in $15{\times}2.75mm$ discs using zirconia. After air blasting of $50{\mu}m$ alumina, samples were prepared by tribochemical silica coating with $Rocatec^{TM}$ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+$Calibra^{(R)}$, (2) Monobond S+$Multilink^{(R)}$ N and (3) ESPN sil+$RelyX^{TM}$ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS. In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION. In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling.

In-vitro performance and fracture strength of thin monolithic zirconia crowns

  • Weigl, Paul;Sander, Anna;Wu, Yanyun;Felber, Roland;Lauer, Hans-Christoph;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.79-84
    • /
    • 2018
  • PURPOSE. All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS. Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: $5^{\circ}C$ and $55^{\circ}C$, $2{\times}3,000cycles$, 2 min/cycle; ML: 50 N, $1.2{\times}10^6cycles$), while the other samples were stored in water ($37^{\circ}C/24h$). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; ${\alpha}=.05$). The fracture mode was analyzed. RESULTS. In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION. 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application.

The examination of application possibility and development of new welding joint shape for aluminum alloy (Al어선 선체용접부의 신형상 개발 및 적용 가능성 검토)

  • Jong-Myung Kim;Chong-In Oh;Han-Sur Bang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.99-107
    • /
    • 2001
  • Manufacture of fishing vessel is needed the effective material for light, strength, fire and corrosion of water in order to improve durability by high-speed and fishing. These fishing vessel can be divided into FRP and AI alloys fishing vessel. FRP fishing vessel is light and effective for strength but highly ignited and susceptible to heat during the manufacturing ship by-produce noxious component for human. In the case of a scrapped ship, it cause environmental pollution. On the other hand, aluminum is a material in return for FRP and has merit of high-strength and lightness. It's more heat proof and durable than FRP and superior to prevent from corrosion. Al alloys fishing vessel development is rising as an urgent matter. But, al alloy has some defect of bad weldability, welding transformation, cracks and overcost of construction. Therefore this study is to develop the new welding joint shape solving aluminum defects and mechanical behavior. First of all, strength was compared and reviewed by analysis of plate, stiffen plate, new model simplified by using plate theory. On the base of this result, plate and new model of temperature distribution, weld residual stress and strength of tensile, compressive force were compared and reviewed by finite element computer program has been developed to deal with heat conduction and thermal elasto plastic problem. Also, new model is proved application possibility and excellent mechanic by strength comparison is established to tensile testing result.

  • PDF

A Study on the Structural Performance of Hybrid Studs Subjected to Compression and Torsion (압축과 비틂을 동시에 받는 복합스터드의 구조적 성능에 관한 연구)

  • Jung, Yun Jin;Kwon, Young Bong;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.543-551
    • /
    • 2006
  • Cold-formed steel studs that are being used as load-bearing members of wall panels for steel houses have a problem with their insulation due to the heat bridging of their web. Some additional thermal insulating materials should be used. To solve this problem, the new-concept hybrid stud, which consists of a galvanized steel sheet (t = 1.0 m - 12.0 m) and a GFRP panel (t = 4.0-6.0 mm), has recently been developed. An investigation on the structural behavior and the strength capacity of this new hybrid stud has been conducted so that it can be used in load-bearing wall panels of residential buildings. This paper describes the axial compression-torsion test results of the hybrid studs under both axial compression and torsion using ATTM. The main factors of the test were the stud length, the magnitude of the initial compressive force, and the loading method of the monotonic or cyclic loading. The torsion was applied increasingly while the initial compression was kept constant to the failure of the hybrid section. The advanced analysis results obtained form the finite element procedure that considered the material properties of the high-strength galvanized steel and the GFRP were compared with the test results for verification.

Influence of vegetable wax on the moisture strength development of inorganic binder (무기바인더의 내수강도 발현에 미치는 식물성 왁스의 영향)

  • Bae, Min A;Kim, Kyeong Ho;Lee, Man Sig;Baek, Jae Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.574-580
    • /
    • 2020
  • An inorganic binder is eco-friendly because it can be cured at low temperatures and does not emit harmful gases. In addition, related research is progressing rapidly owing to the small defects in the core. On the other hand, inorganic binders based on silicates (SiO2-Na2O) have unique absorbent properties. This results in the absorption of moisture from the air and the weakening of the bonding force. In particular, the castings used in cast steel require high-strength properties because of the higher temperatures than aluminum castings. In this study, waxes containing ester groups were selected to improve the absorption of moisture of inorganic binders. The inorganic binder was characterized by X-ray fluorescence and thermogravimetric analysis-differential thermal analysis. The inorganic binder core strength was then evaluated. In the case of an inorganic binder containing wax, the water resistance increased to 216 N/㎠, confirming the up to 55% improvement in strength. Excellent casting characteristics were confirmed through steel castings.

The electrical properties of PLZT thin films on ITO coated glass with various post-annealing temperature (ITO 기판에 제작된 PLZT 박막의 후열처리 온도에 따른 전기적 특성평가)

  • Cha, Won-Hyo;Youn, Ji-Eon;Hwang, Dong-Hyun;Lee, Chul-Su;Lee, In-Seok;Sona, Young-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • Lanthanum modified lead zirconate titanate ($Pb_{1.1}La_{0.08}Zr_{0.65}Ti_{0.35}O_3$) thin films were fabricated on indium doped tin oxide (ITO)-coated glass substrate by R.F magnetron sputtering method. The thin films were deposited at $500^{\circ}C$ and post-annealed with various temperature ($550-750^{\circ}C$) by rapid thermal annealing technique. The structure and morphology of the films were characterized with X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The hysteresis loops and fatigue properties of thin films were measured by precision material analyzer. As the annealing temperature was increased, the remnant polarization value was increased from $10.6{\mu}C/cm^2$ to $31.4{\mu}C/cm^2$, and coercive field was reduced from 79.9 kV/cm to 60.9 kV/cm. As a result of polarization endurance analysis, the remnant polarization of PLZT thin films annealed at $700^{\circ}C$ was decreased 15% after $10^9$ switching cycles using 1MHz square wave form at ${\pm}5V$.

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF