• Title/Summary/Keyword: Thermal force

Search Result 908, Processing Time 0.028 seconds

Property Evaluation of Kinetic Sprayed Al-Ni Composite Coatings (저온 분사 공정을 통하여 형성된 Al/Ni 복합소재 코팅의 특성 평가)

  • Byun, GyeongJun;Kim, JaeIck;Lee, Changhee;Kim, SeeJo;Lee, Seong
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.72-79
    • /
    • 2014
  • Shaped charge(SC) ammunition is a weapon that penetrates directly the target by made jet from metal liner on impacting at a target. In SC, the liner occupies significantly important role causing an explosion and penetration of the target. The Al-Ni composite coating was deposited on copper liner in a solid state via kinetic spraying to improve the explosive force. The mechanical properties, reactivity and microstructure were investigated to confirm the possibility of kinetic sprayed Al/Ni composite coating as a reactive liner material. Reactive liner using Al/Ni composite exhibited much enhanced reactivity than pure copper liner due to Self-propagating High-temperature Synthesis (SHS) reaction with significantly improved adhesive bond strength. Especially, among the Al/Ni composite coatings, AN11 (the Al versus Ni atomic percent ratio is 1:1) showed the greatest reactivity due to its widest reaction area between deposited Al and Ni.

Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness

  • Tekin, Yadel Hazir;Hayran, Yeliz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.283-290
    • /
    • 2020
  • PURPOSE. The present study aimed to evaluate the clinical applicability of monolithic zirconia (MZ) crowns of different thickness via determination of fracture resistance and marginal fit. MATERIALS AND METHODS. MZ crowns with 0.5, 0.8, 1.0, and 1.5 mm thickness and porcelain fused to metal (PFM) crowns were prepared, ten crowns in each group. Marginal gaps of the crowns were measured. All crowns were aged with thermal cycling (5 - 55℃/10000 cycle) and chewing simulator (50 N/1 Hz/lateral movement: 2 mm, mouth opening: 2 mm/240000 cycles). After aging, fracture resistance of crowns was determined. Statistical analysis was performed with one-way ANOVA and Tukey's HDS post hoc test. RESULTS. Fracture loads were higher in the PFM and 1 mm MZ crowns compared to 0.5 mm and 0.8 mm crowns. 1.5 mm MZ crowns were not broken even with the highest force applied (10 kN). All marginal gap values were below 86 ㎛ even in the PFM crowns, and PFM crowns had a higher marginal gap than the MZ crowns. CONCLUSION. The monolithic zirconia exhibited high fracture resistance and good marginal fit even with the 0.5 mm thickness, which might be used with reduced occlusal thickness and be beneficial in challengingly narrow interocclusal space.

A Study on the Evaluation of Physical Properties of Polymer-based Composite Materials for the Brake of the Automobile (자동차 브레이크용 고분자복합재료의 물리적 특성평가에 관한 연구)

  • Son, Tae Gwan;Kim, Yun Hae;Kim, Bong Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.75-75
    • /
    • 1996
  • The rapid expansion for the auto-industry and the worldwide trend toward non-asbestos friction materials for brake lining force our industry to transfer into non-asbestos ones from asbestos-based friction materials. Furthermore, it is imperative for the friction materials to have technological excellence and lower production cost to be competitive in the world market. There is no known theoretical procedures to formulate friction materials. It, rather, depends on the trial and error process. Thus, it is quite clear how important it is to accumulate the know-how on the formulation and manufacturing the friction material. This study concerns the practical ways of conceptualizing the formulation and optimizing the manufacturing process. This study focused on the development of formulation for non-asbestos friction material as well as deriving the physical properties of the trial product to prove its validity and applicability. Elaboration of the formula and optimizing scheme of the manufacturing process to get better quality are also sought. Physical properties were obtained by constant velocity test dynamotest, hardness test and strength test. Differential scanning calorimeter was also used to analyze the thermal reactions of organic constituents, microstructures, bond effects, and degree of mixture.

A Study on the Evaluation of Physical Properties of Polymer-based Composite Materials for the Brake of the Automobile (자동차 브레이크용 고분자복합재료의 물리적 특성평가에 관한 연구)

  • 손태관;김윤해;김봉식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.7-14
    • /
    • 1996
  • The rapid expansion for the auto-industry and the worldwide trend toward non-asbestos friction materials for brake lining force our industry to transfer into non-asbestos ones from asbestos-based friction materials. Furthermore, it is imperative for the friction materials to have technological excellence and lower production cost to be competitive in the world market. There is no known theoretical procedures to formulate friction materials. It, rather, depends on the trial and error process. Thus, it is quite clear how important it is to accumulate the know-how on the formulation and manufacturing the friction material. This study concerns the practical ways of conceptualizing the formulation and optimizing the manufacturing process. This study focused on the development of formulation for non-asbestos friction material as well as deriving the physical properties of the trial product to prove its validity and applicability. Elaboration of the formula and optimizing scheme of the manufacturing process to get better quality are also sought. Physical properties were obtained by constant velocity test dynamotest, hardness test and strength test. Differential scanning calorimeter was also used to analyze the thermal reactions of organic constituents, microstructures, bond effects, and degree of mixture.

  • PDF

Cu Line Fabricated with Inkjet Printing Technology for Printed Circuit Board (잉크젯 인쇄 기술을 이용한 인쇄회로기판용 나노구리배선 개발)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Yun, Kwan-Soo;Joung, Jae-Woo;Lee, Hee-Jo;Yook, Jong-Gwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1806-1809
    • /
    • 2008
  • Study that form micro pattern by direct ink jet printing method is getting attention recently. Direct ink jet printing spout fine droplet including nano metal particle by force or air pressure. There is reason which ink jet printing method is profitable especially in a various micro-patterning technology. It can embody patterns directly without complex process such as mask manufacture or screen-printing for existent lithography. In this study, research of a technology that ejects fine droplet form of Pico liter and forms metal micro pattern was carried with inkjet head of piezoelectricity drive system. Droplet established pattern while ejecting consecutively and move on the surface at the fixed speed. Patterns formed in ink are mixed with organic solvent and polymer that act as binder. So added thermal hardening process after evaporate organic solvent at isothermal after printing. I executed high frequency special quality estimation of CPW transmission line to confirm electrical property of manufactured circuit board. We tried a large area printing to confirm application possibility of an ink jet technology.

  • PDF

Moving load induced dynamic response of functionally graded-carbon nanotubes-reinforced pipes conveying fluid subjected to thermal load

  • Tahami, F. Vakili;Biglari, H.;Raminnea, M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.515-526
    • /
    • 2017
  • Dynamic response of functionally graded Carbon nanotubes (FG-CNT) reinforced pipes conveying viscous fluid under accelerated moving load is presented. The mixture rule is used for obtaining the material properties of nano-composite pipe. The radial force induced by viscous fluid is calculated by Navier-Stokes equation. The material properties of pipe are considered temperature-dependent. The structure is simulated by Reddy higher-order shear deformation shell theory and the corresponding motion equations are derived by Hamilton's principal. Differential quadrature (DQ) method and the Integral Quadrature (IQ) are applied for analogizing the motion equations and then the Newmark time integration scheme is used for obtaining the dynamic response of structure. The effects of different parameters such as boundary conditions, geometrical parameters, velocity and acceleration of moving load, CNT volume percent and distribution type are shown on the dynamic response of pipe. Results indicate that increasing CNTs leads to decrease in transient deflection of structure. In accelerated motion of the moving load, the maximum displacement is occurred later with respect to decelerated motion of moving load.

Development of the Welded Bellows for KSTAR Vacuum Vessel (KSTAR 진공용기용 용접 Bellows 개발)

  • Her, N.I.;Kim, B.C.;Kim, G.H.;Hong, G.H.;Sa, J.W.;Kim, H.K.;Kim, K.M.;Bak, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1098-1102
    • /
    • 2003
  • Vacuum vessel of the KSTAR(Korea Superconducting Tokamak Advanced Research) tokamak is a fully welded structure with D-shaped cross-section. According to the requirements of the physics design, sixteen horizontal ports, sixteen slanted ports, sixteen baking and cooling ports, and twenty-four top and bottom vertical ports are designed for the diagnostics, plasma heating, vacuum pumping, and baking and cooling. Bellows on these ports are used for flexible components to absorb the relative displacement due to the vacuum vessel thermal expansion and the electromagnetic force between the vacuum vessel and the cryostat ports. Fatigue strength evaluation was performed to decide the dimension of the bellows. In order to assure the quality of the bellows, a prototype bellows for the neutral beam injection port has been fabricated and tested prior to main fabrication. It was conformed that the prototype bellows has sufficient fatigue strength and vacuum reliability in the expected load conditions.

  • PDF

Characteristics of IGZO Films Formed by Room Temperature with Thermal Annealing Temperature (상온에서 증착된 IGZO 박막의 열처리 온도에 따른 특성)

  • Lee, Seok-Ryeol;Lee, Kyong-Taik;Kim, Jae-Yeal;Yang, Myoung-Su;Kang, In-Byeong;Lee, Ho-Seong
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.4
    • /
    • pp.181-185
    • /
    • 2014
  • We investigated the structural, electrical and optical characteristics of IGZO thin films deposited by a room-temperature RF reactive magnetron sputtering. The thin films deposited were annealed for 2 hours at various temperatures of 300, 400, 500 and $600^{\circ}C$ and analyzed by using X-ray diffractometer, transmission electron microscopy, atomic force microscope and Hall effects measurement system. The films annealed at $600^{\circ}C$ were found to be crystallized and their surface roughness was decreased from 0.73 nm to 0.67 nm. According to XPS measurements, concentration of oxygen vacancies were decreased at $600^{\circ}C$. Optical band gap were increased to 3.31eV. The carrier concentration and Hall mobility were sharply increased at 600oC. Our results indicate that the IGZO films deposited at a room temperature can show better thin film properties through a heat treatment.

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료의 가공기술에 관한 연구)

  • Lee Seok-Woo;Choi Heon-Jong;Yi Bong-Gu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.245-252
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric md hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $Al_2O_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Design and optimization of 900kW class PMSG, based on Unison U50 model (Unison U50 직접구동 영구자석 발전기를 기반으로 한 900kW급 동기발전기 설계 및 최적화)

  • Kim, Tae-Hun;Lee, Sang-Woo;Kim, Dong-Eon;Chung, Chin-Wha;Park, H.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.423-426
    • /
    • 2009
  • POSTECH Graduate School of Wind Energy is trying to upgrade the PMSG used for Unison U50 to 900 kW class. Intensive optimization efforts are carried out the reduce the axial size and total weight of the generator while increasing the rated output to 900 kW. The generator features 3.32m stator inner radius, 671mm stator length, 84 pole, 25 rated rpm and 31.6kN/$m^2$ shear force density. To reduce the gross weight, the stronger magnetic material is applied with optimal magnet size resulting lowest cogging torque. Also, instead of stator skewing the stator, the magnet position along the circumference is optimized to further reduce the cogging torque. This scheme eliminates the stator skewing procedure and may enhance the productivity. This method also reduces the total harmonic distortion. In this report, upgrade method, no-load line to line voltage and phase voltage, cogging torque, loss calculations and thermal analysis are presented.

  • PDF