DOI QR코드

DOI QR Code

Characteristics of IGZO Films Formed by Room Temperature with Thermal Annealing Temperature

상온에서 증착된 IGZO 박막의 열처리 온도에 따른 특성

  • Received : 2014.08.04
  • Accepted : 2014.08.20
  • Published : 2014.08.30

Abstract

We investigated the structural, electrical and optical characteristics of IGZO thin films deposited by a room-temperature RF reactive magnetron sputtering. The thin films deposited were annealed for 2 hours at various temperatures of 300, 400, 500 and $600^{\circ}C$ and analyzed by using X-ray diffractometer, transmission electron microscopy, atomic force microscope and Hall effects measurement system. The films annealed at $600^{\circ}C$ were found to be crystallized and their surface roughness was decreased from 0.73 nm to 0.67 nm. According to XPS measurements, concentration of oxygen vacancies were decreased at $600^{\circ}C$. Optical band gap were increased to 3.31eV. The carrier concentration and Hall mobility were sharply increased at 600oC. Our results indicate that the IGZO films deposited at a room temperature can show better thin film properties through a heat treatment.

Keywords

References

  1. H. Hosono., J. Non-cryst. Solids., 532 (2006) 851.
  2. K. Nomura, A. Takagi. et al., Jpn. J. Appl. Phys., 45 (2006) 4303. https://doi.org/10.1143/JJAP.45.4303
  3. H. Yabuta, M. Sano. et al., Appl. Phys. Lett., 89 (2006) 112123. https://doi.org/10.1063/1.2353811
  4. W. T. Chen, S. Y. Lo. et al., IEEE Electron Dev. Lett., 32 (2011) 1552. https://doi.org/10.1109/LED.2011.2165694
  5. J. S. Park, J. K. Jeong. et al., Appl. Phys. Lett., 92 (2008) 072104. https://doi.org/10.1063/1.2838380
  6. D. H. Kang, H. Lim. et al., Appl. Phys. Lett. 90 (2007) 192101. https://doi.org/10.1063/1.2723543
  7. K. Ide, Y. Kikuchi. et al., Thin Solid Films, 520 (2012) 3787. https://doi.org/10.1016/j.tsf.2011.10.062
  8. H. S. Shin, B. D. Ahn. et al., J. Inform. Display, 12 (2011) 209. https://doi.org/10.1080/15980316.2011.621331
  9. S. H. Bae, I. H. Yoo. et al., J. Kor. Ceram. Soc. 47 (2010) 329. https://doi.org/10.4191/KCERS.2010.47.4.329
  10. C. C. Lo, T. E. Hsieh. et al., ESC Transactions. 28 (2010) 131.
  11. D. H. Tahir, E, K. Lee. et al., Surf. Interface Anal, 42 (2010) 906. https://doi.org/10.1002/sia.3364
  12. Y. S. Lee, Z. M. Dai. et al., Ceramics International 385 (2012) S595.
  13. C. H. Wu, K. M. Chang. et al., ECS Transactions 45 (2012) 189.
  14. M. S. Kim, D. Y. Kim. et al., J. KIEEME 23 (2010) 961
  15. H. S. Jeon, S. W. Na, et al., J. Electrochem. Soc., 158 (2011) 158.
  16. M. J. Gader, T. L. Alford. et al., Appl. Phys. Lett., 99 (2011) 051901. https://doi.org/10.1063/1.3619196
  17. M. R. Moon, S. W. Na. et al., Surf. Interface Anal, 44 (2012) 1431. https://doi.org/10.1002/sia.4968
  18. T. T. Trinh, V. D. Nguyen. et al., Semicond. Sci. Technol. 26 (2011) 085012. https://doi.org/10.1088/0268-1242/26/8/085012
  19. B. D. Ahn, H. S. Shin. et al., Jpn. J. Appl. Phys., 48 (2009) 03B019.