• 제목/요약/키워드: Thermal flexibility

검색결과 184건 처리시간 0.024초

Effect of Plasticization of Poly(Vinyl Cinnamate) on Liquid Crystal Orientation Stability

  • Hah, Hyun-Dae;Sung, Shi-Joon;Cho, Ki-Yun;Kim, Won-Sun;Jeong, Yong-Cheol;Park, Jung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1518-1522
    • /
    • 2005
  • A cinnamate group is a well-known compound group used in the dimerization reaction by ultraviolet irradiation, and cinnamate polymers are studied as photoalignment materials. In this study, the radical reaction of cinnamate side groups attached to a flexible polymer backbone is considered feasible using thermal energy. To induce the thermal reaction of cinnamate side groups, we modified the flexibility of poly(vinyl cinnamate) by introducing a plasticizer into the polymers and investigated the thermal reaction behavior of cinnamate side groups. The plasticization of poly(vinyl cinnamate) makes the induction of the thermal reaction of cinnamate side groups easier than that of unmodified poly(vinyl cinnamate). The thermal reaction of cinnamate side groups is closely related to the enhancement of the thermal stability of the liquid crystal orientation of polymer films with polarized UV irradiation.

  • PDF

태양복사열에 따른 지표면 온도와 열, 기류 환경 시뮬레이션 연구 (CFD Simulations of the Ground Surface Temperature and Air Temperature, Air flow Coupled with Solar Radiation)

  • 이주희;김재권;윤재옥
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.65-70
    • /
    • 2014
  • The thermal environment in a small city rapidly deteriorates due to the urbanization and overpopulation. It is important to understand and predict the thermal environment in a city area. The thermal environment is highly affected by the solar radiation and temperature distributions changing over time periodically. To predict the thermal environment precisely, the solar radiation calculation including radiation strength, incidence angle, and thermal radiation between building surface and ground should be considered. In this study, the computational domain includes various artificial structures such as building, ground, asphalt, brick and grass. To consider the solar radiation, the unsteady state numerical calculation is performed from sun rise to mid-day (2:00pm). The numerical methods consist of solar load and one dimensional heat conduction through the boundaries to reduce the computational load and improve the flexibility of the calculation.

Two different reaction mechanisms of cinnamate side groups attached to the various polymer backbones

  • Hah, Hyun-Dae;Sung, Shi-Joon;Cho, Ki-Yun;Jeong, Yong-Cheol;Park, Jung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.772-775
    • /
    • 2006
  • Cinnamate polymers are well known photoreactive polymers due to [2+2] cycloaddition reaction of cinnamate side group. In this work, we have found that the cinnamate side groups could be also reacted by thermal energy, and this reaction is presumed to attribute to the radical reaction of carbon double bond in the cinnamate groups. Contrary to the photocycloaddition reaction of the cinnamate side groups, the thermal reaction of cinnamate side group was closely related to the flexibility of polymer backbone. The difference of the mechanism between the photocycloaddition reaction and thermal crosslinking reaction was confirmed by $^1H-NMR$$ and $^{13}C-NMR$ analysis of the model compound.

  • PDF

Fabrication of Organic-Inorganic Nanohybrid Semiconductors for Flexible Electronic Device

  • 한규석;정희찬;권덕현;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.114-114
    • /
    • 2011
  • We report a high-performance and air-stable flexible and invisible semiconductor which can be substitute for the n-type organic semiconductors. N-type organic-inorganic nanohybrid superlattices were developed for active semiconducting channel layers of thin film transistors at low temperature of $150^{\circ}C$ by using molecular layer deposition with atomic layer deposition. In these nanohybrid superlattices, self-assembled organic layers (SAOLs) offer structural flexibility, whereas ZnO inorganic layers provide the potential for semiconducting properties, and thermal and mechanical stability. The prepared SAOLs-ZnO nanohybrid thin films exhibited good flexibility, transparent in the visible range, and excellent field effect mobility (> 7cm2/$V{\cdot}s$) under low voltage operation (from -1 to 3V). The nanohybrid semiconductor is also compatible with pentacene in p-n junction diodes.

  • PDF

그린하우스 열환경 조절을 위한 파라핀계 화합물(CnH2n+2)의 잠열 축열 특성 (Latent Heat Storage Characteristics of Some Paraffins(CnH2n+2) for Thermal Environment Control of Greenhouse)

  • 송현갑;유영선
    • Journal of Biosystems Engineering
    • /
    • 제21권1호
    • /
    • pp.84-93
    • /
    • 1996
  • Several paraffins(CnH2n +2) can be used as the thermal energy storage medium because of their large amount of latent heat and their flexibility of phase change temperature. But they have not been used in the thermal energy storage system because their long term stability have not been verified. Paraffins(CnH2n+2) which the values of n are 23, 24, 26 and 28 were selected for this experimental research. And this research was peformed to apply them to the practical systems. The results were summarized as follows. (1) The increase of phase change cycles had no effect on their phase change temperatures. (2) According as the values of n increased from 23 to 28, the specific heats of paraffins(CnH2n+2) increased, and were in the range of 0.47 0.75 ㎉/$kg^circ C$. (3) Thermal conductivities of them were in the range of 0.14 0.17 W/$m^circ C$. and specific gravities of them were in the range of 765800 kg/m3. (4) The density of paraffins was in the range of 765 800 kg/$m^circ C$ , and the density of solid phase was larger than that of liquid phase. (5) When the number of phase change cycles was 1, 500 cycles, the latent heat of paraffins was 90% of the initial value.

  • PDF

전극 구조가 간편한 삼상 교류 플라즈마 토치 (Three-Phase AC Plasma Torch with Simple Electrode System)

  • 김광수;박점문;김영배;이홍식;임근희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1859-1861
    • /
    • 2000
  • The high temperature thermal plasma technology applied to waste treatment has undoubtedly gained high importance owing to its outstanding properties such as flexibility, compact reactor. and clean treatment as the environmental problem goes to a main issue in public talks, because the thermal plasma with temperature of around 10,000K or little less is particularly suitable for waste treatment. Since the thermal plasma is, in general, governed by a number of parameters, some complicated and elaborate controls might be mandatory. The high maintenance cost caused by big input power has been a main obstacle to the growth of the waste treatment plant based on thermal plasma technology, but the recent R&D on the waste-to-energy shows that the problem could be solved soon. In this paper, the authors introduce the current R&D activity related to three-phase ac plasma torch in KERI.

  • PDF

Flexible 기판의 Bending Stress에 대한 Encapsulation Layer의 영향 (The Influence of Encapsulation Layer Incorporated into Flexible Substrates for Bending Stress)

  • 박준백;서대식;이상극;이준웅;김영훈;문대규;한정인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.473-476
    • /
    • 2003
  • This paper shows necessity of encapsulation layer to maximite flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer have an significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that have a significant effect on internal thermal stress. To compare magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

  • PDF

Temperature Measurement of Photovoltaic Modules Using Non-Contact Infrared System

  • Jovanovic, Ugljesa;Mancic, Dragan;Jovanovic, Igor;Petrusic, Zoran
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.904-910
    • /
    • 2017
  • This paper presents temperature measurement of solar photovoltaic modules using the custom-made system composed of an infrared temperature sensor and a microcontroller. The obtained measurement results are processed, displayed and stored on a PC using the custom-made virtual instrument. The proposed system overcomes some of the problems related to the contact sensor application, and at the same time offers accurate readings and better flexibility. The proposed system is especially suitable for applications where the cost is a limiting factor in the choice of measuring system. The conducted analysis and the obtained results have shown an excellent accuracy of the proposed system in comparison to a high quality thermal imaging camera used as the reference instrument.

모터내장형 주축의 냉각특성에 관한 연구 (Study on the Cooling Effect of Motor Integrated Spindle)

  • 송영찬;이득우;최대봉;김수태
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.8-13
    • /
    • 1997
  • Generally, A motor integrated spindle is selected to perform the high speed machining, to improve the machining flexibility, and to simplify the structure of machine tools. The thermal deformation caused by heat generation of the integrated motor is, however, serious problem in motor integrated spindle system. In this study, cooling characteristics for the several kinds of cooling systems(such as, oil-jacket cooling, air cooling) are investigated and more efficient cooling method is presented. The results show that the shaft cooling by the air cooling system is effective to improve the thermal characteristic of motor integrated spindle.

Self-activated Graphene Gas Sensors: A Mini Review

  • Kim, Taehoon;Eom, Tae Hoon;Jang, Ho Won
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.220-226
    • /
    • 2020
  • Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. However, the main drawback of a graphene-based gas sensor is the necessity for external heaters due to its slow response, incomplete recovery, and low selectivity at room temperature. Conventional heating devices have limitations such as large volume, thermal safety issues, and high power consumption. Moreover, metal-based heating systems cannot be applied to transparent and flexible devices. Thus, to solve this problem, a method of supplying the thermal energy necessary for gas sensing via the self-heating of graphene by utilizing its high carrier mobility has been studied. Herein, we provide a brief review of recent studies on self-activated graphene-based gas sensors. This review also describes various strategies for the self-activation of graphene sensors and the enhancement of their sensing properties.