• Title/Summary/Keyword: Thermal expansion data

Search Result 161, Processing Time 0.029 seconds

A Basic Study on the Stress Field in the Electrode Interface of the Planar SOFC Single Cell (평판형 SOFC 단전지 전극계면에서 발생되는 응력장에 관한 기초적 연구)

  • Park, Chul Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.5-9
    • /
    • 2013
  • Recently, eco-friendly sources of energy by fuel cells that use hydrogen as an energy source has emerged as the next generation of energy to solve the problem of environmental issues and exhaustion of energy. A solid oxide fuel cell(SOFC) classified based on the type of ion transfer mediator electrolyte has actively being researched. However, the reliability according to the thermal cycle is low during the operation of the fuel cell, and deformation problem comes from the difference in thermal expansion coefficient between the electrode material, the components made of ceramic material is also brittle, which means disadvantages in terms of the strength. Therefore, in this study, considering the states of the manufacturing and operating of SOFC single cells, the stress analyses in the each of the interfacial layer between the anode, electrolyte and the cathode were performed to get the basic data for reliability assessment of SOFC. The obtained results show that von Mises stress according to the thickness direction on operating state occurred maximum stress value in the electrolyte layer. And also the stresses inside the active area on a distance of 1 ${\mu}m$ from the electrode interface were estimated. Futhermore the evaluation was done for the variation of the stress according to the stage of the operation divided into three stages of manufacturing, stack, and operating.

Activities of IEA SolarPACES Task-1 & 3 Programs (IEA SolarPACES Task-1, 3 활동보고)

  • Kim, Jong-Kyu;Lee, Hyun-Jin;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.324-327
    • /
    • 2011
  • SolarPACES(Solar Power and Chemical Energy systems) is an international organization under the REWP(Renewable Energy Working Party)in the IEA(International Energy Agency) and focuses on the technology development and market expansion of CSP(Concentrating Solar Power). Seventeen countries including Rep. of Korea participate in the ExCo(Executive Committee) of SolarPACES. The ExCo meeting helds two times in a year and the second ExCo meeting opens in company with the five Task meetings. Rep. of Korea takes part in the Task-1officially. The 81th ExCo and Task meetings were held during September 18 and 19 in Spain with SolarPACES conference which also continued in succession to September 23 in this year. This paper introduces the activities which have been under progressed in the Task-1 and Task-3based on this time attendance of the meeting. In accordance with the expansion of CSP market and technology development, the needs for the standardization and project status underway in the world are increasing. Therefore, build an international project database and standard of the CSP technology are the main activities in the Task-1 and the standardization is also connected with the Task-3. In addition, to increase the reliability of the new technology of CSP and to reduce the concern of investors, the Task-1 is making guidelines for CSP performance prediction which can provide medium quality calculated performance data of PTC(Parabolic Trough Concentrator) type technology widely used and occupies over 90% CSP market.

  • PDF

Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites (단섬유 강화 에폭시 복합재료의 열적/기계적 특성)

  • Huang, Guang-Chun;Lee, Chung-Hee;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.530-536
    • /
    • 2009
  • A cycloaliphatic epoxy/acidic anhydride system incorporating short carbon fibers (SCF) and short glass fibers (SGF) was fabricated and thermal/mechanical properties were characterized. At low filler content both SCF- and SGF-reinforced composites showed a similar decrease in coefficient of thermal expansion (CTE), measured by a thermomechanical analyzer, with increasing loadings, above which SCF became more effective than SGF at reducing the CTE. Experimental CTE data for the SCF-reinforced composites is best described by the rule of mixtures at lower SCF contents and by the Craft-Christensen model at higher SCF contents. Storage modulus (E') at $30^{\circ}C$ and $180^{\circ}C$ was greatly enhanced for short fiber-filled composites compared to unfilled specimens, Scanning electron microscopy of the fracture surfaces indicated that the decreased CTE and the increased E' of the short fiber-reinforced composites resulted from good interfacial adhesion between the fibers and epoxy matrix.

Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying (분무건조 및 대기 플라즈마 용사에 의한 지르코니아 열차폐 코팅재의 제조 및 평가)

  • Kim, Chul;Heo, Yong Suk;Kim, Tae Woo;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.326-332
    • /
    • 2013
  • In this study, we prepared yttria stabilized zirconia granules for thermal barrier coatings using a spray drying process. First, we characterized the properties of granules such as flow rate and packing density for utilizing the air plasma spray process. The flow rate and packing density data showed 0.732 g/sec and 2.14 $g/cm^3$, respectively, when we used larger and denser particles, which are better than hollow granules or smaller spherical granules. Second, we chose larger, spherical granules fabricated in alcohol solvent as starting powders and sprayed it on the bondcoat/nimonic alloy by an atmospheric plasma spray process varying the process parameters, the feeding rate, gun speed and spray distance. Finally, we evaluated representative thermal and mechanical characteristics. The thermal expansion coefficients of the coatings were $11{\sim}12.7{\times}10^{-6}/^{\circ}C$ and the indentation stress measured was 2.5 GPa at 0.15 of indentation strain.

A Study on the Condensation and Thermal Environment according to Window Systems Types Installed for a Extended-Balcony Apartment (확장형 발코니 공동주택의 창호종류에 따른 결로 및 온열환경에 관한 연구)

  • Yoon, Jong-Ho;An, Young-Sub;Kim, Byoung-Soo
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.87-92
    • /
    • 2007
  • As expansion of balconies at apartments has been legalized, the major function of the balconies as a thermal buffer zone is disappearing. This weakens the ability of window to insulate heat and multiplies surface condensation. Thus more and more residents require solutions to increasing surface condensation and aggravation in thermal comfort. This study intends to provide basic data by evaluating performance of triple layered Low-E windows, triple layered clear windows, double layered Low-E windows and double layered clear window used for expanded balconies and marketed within the country in terms of surface condensation and thermal environment through simulation. Results revealed that no surface condensation occurred at double layered Low-E windows and triple layered Low-E windows. Surface condensation took place at double layered clear windows and triple layered clear windows at a relative humidity of 60%. Thermal environment analysis suggested that double layered clear windows showed the most time falling into the range of comfort at $23^{\circ}C$. The figure were $22^{\circ}C$ for triple layered clear windows, $22^{\circ}C$ for double layered Low-E windows and $21^{\circ}C$ for triple layered Low-E windows.

Development of the Phased Array Ultrasonic Test Technique for the Weld Inspection of Reactor Coolant System 3" Branch Connection Lines in Nuclear Power Plants (원자로냉각재계통 3" 분기관 용접부 위상배열초음파탐상검사(PAUT)기법 개발)

  • Lee, Seung-Pyo;Moon, Yong-Sig;Jung, Nam-Du;Cho, Yong-Bae;Kim, Chang-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.40-45
    • /
    • 2008
  • There exist many types of pipe and component fatigue through vibrations, thermal fatigues or shifting. In some cases of thermal stratification/thermal fatigue, pipes & components are receiving thermal stress by means of material expansion and shrinkage by continuous thermal repetitive variation. Small cracks initially occur on the inside surface by thermal stress. These cracks grow in depth the pipe wall and finally come to a rupture. Pipe parts of susceptibility to thermal stratification and thermal fatigue are now being examined by conventional UT(ultrasonic test) as volumetric examination. It is difficult to fully satisfy the code & standards requirements because 3" weldolet weldments of RCS 16" pipe to 3" branch connection lines have complex structural shape. To solve the problems of conventional UT examination, we made a realistic mock-up and UT calibration block. We performed a simulation of phased array UT utilizing CIVA as NDE(Non-Destructive Examination) simulation software. Also we designed phased array UT transducer and wedge, optimal frequency by using simulation data. We performed phased array UT experiment through mock-up including artificial flaws(notch). The phased array UT technique is finally developed to improve the reliability of ultrasonic test at RCS 16" pipe to 3" branch connection weld.

  • PDF

Numerical Simulation of the Water Temperature in the Al-Zour Area of Kuwait

  • Lee, Myung Eun;Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.334-343
    • /
    • 2019
  • The Al-Zour coastal area, located in southern Kuwait, is a region of concentrated industrial water use, seawater intake, and the outfall of existing power plants. The Al-Zour LNG import facility project is ongoing and there are two issues regarding the seawater temperature in this area that must be considered: variations in water temperature under local meteorology and an increase in water temperature due to the expansion of the thermal discharge of expanded power plant. MIKE 3 model was applied to simulate the water temperature from June to July, based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the thermal discharge input from adjacent power plants. The annual water temperatures of two candidate locations of the seawater intake for the Al-Zour LNG re-gasification facility were measured in 2017 and compared to the numerical results. It was determined that the daily seawater temperature is mainly affected by thermal plume dispersion oscillating with the phase of the tidal currents. The regional meteorological conditions such as air temperature and tidal currents, also contributed a great deal to the prediction of seawater temperature.

Design of High-precision CTE measurement System for the Structural Materials in Space Applications (우주용 구조 재료의 초정밀 열팽창계수 측정시스템 설계)

  • Kim, Hong-Il;Han, Jae-Hung;Yang, Ho-Soon;Cho, Chang-Rae;Cho, Hyok-Jin;Kim, Hong-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.916-922
    • /
    • 2008
  • Structures being used in space environment, should be designed to have minimum CTE(coefficient of thermal expansion) for the dimensional stability. Accurate CTE data of the materials are required to design the space structures consisting of various materials. There are uncertainties in the characteristics of materials even though the same manufacturing processes are applied. Therefore, it is needed to measure the thermal deformation of not only the material specimen but also substructures in simulated space environment, such as high vacuum condition. In this research, therefore, precise CTE measurement system using displacement measuring interferometer and vacuum chamber has been designed with uncertainty analysis of the measurements. This system can be used to measure the CTE of the specimen or thermal expansion of the substructure with varying size up to 50cm in length. To measure the low CTE material, overall uncertainty of this system is expected under 0.01ppm/K.

G192.8-1.1: A CANDIDATE OF AN EVOLVED THERMAL COMPOSITE SUPERNOVA REMNANT REIGNITED BY NEARBY MASSIVE STARS

  • Kang, Ji-Hyun;Koo, Bon-Chul;Byun, Do-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.259-277
    • /
    • 2014
  • G192.8-1.1 has been known as one of the faintest supernova remnants (SNRs) in the Galax until the radio continuum of G192.8-1.1 is proved to be thermal by Gao et al. (2011). Yet, the nature of G192.8-1.1 has not been fully investigated. Here, we report the possible discovery of faint non-thermal radio continuum components with a spectral index ${\alpha}{\sim}0.56(S_{\nu}{\propto}{\nu}^{-{\alpha}})$ around G192.8-1.1, while of the radio continuum emission is thermal. Also, our Arecibo $H_I$ data reveal an $H_I$ shell, expanding with an expansion velocity of $20-60km\;s^{-1}$, that has an excellent morphological correlation with the radio continuum emission. The estimated physical parameters of the $H_I$ shell and the possible association of non-thermal radio continuum emission with it suggest G192.8-1.1 to be an~0.3 Myr-old SNR. However, the presence of thermal radio continuum implies the presence of early-type stars in the same region. One possibility is that a massive star is ionizing the interior of an old SNR. If it is the case, the electron distribution assumed by the centrally-peaked surface brightness of thermal emission implies that G192.8-1.1 is a "thermal-composite" SNR, rather than a typical shell-type SNR, where the central hot gas that used to be bright in X-rays has cooled down. Therefore, we propose that G192.8-1.1 is an old evolved thermal-composite SNR showing recurring emission in the radio continuum due to a nearby massive star. The infrared image supports that the $H_I$ shell of G192.8-1.1 is currently encountering a nearby star forming region that possibly contains an early type star(s).

Stroke Analysis of Large Bore Hydraulic Snubber Supporting Reactor Coolant System (원자로 냉각재 계통을 지지하는 대구경 유압식 스너버의 이동거리 해석)

  • 이상호;윤기석;전장환;박명규;엄세윤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.61-67
    • /
    • 1995
  • The steam generator, one of the major components in the reactor coolant system, plays an important role in transferring the thermal energy made in the reactor during normal operation to the secondary side and producing steam to drive turbine. A hydraulic snubber system is used in order to protect the steam generator under the dynamic loading condition and to absorb the thermal expansion transmitted by the reactor coolant piping due to high temperature and pressure during normal operation. In this study, the model for a geometrical linkage system is presented to analyze the snubber stroke of the steam generator and the parameters in the snubber stroke analysis are investigated. A method to analyze lever ratio of the linkage system which is required in the process of determining the snubber stiffness value is also presented. To discuss the validation of the suggested analysis, the analysis results are compared with the measured data during the hot functional test for the standardized 1000 Mwe pressurized water reactor plant under the construction.

  • PDF