• Title/Summary/Keyword: Thermal evolution

Search Result 360, Processing Time 0.024 seconds

Nanostructure and Thermal Effects Dependent on the Film Thickness in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester(P3HT:PCBM) Films Fabricated by 1,2-Dichlorobenzene Solvent for Organic Photovoltaics (1,2-Dichlorobenzene Solvent를 이용한 고분자 유기태양전지에서 박막 두께에 따른 나노 구조와 열처리 효과)

  • Lee, Hyun Hwi;Kim, Hyo Jung
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.347-352
    • /
    • 2014
  • Film thickness dependent nanostructure evolution by a post annealing was investigated in poly (3-hexylthiophene):phenyl-C61-butyric acid methyl ester(P3HT:PCBM) films for organic solar cells which were fabricated by dichlorobenzene(DCB) solvent. In case of a 70nm thin film, the thermal annealing process affected to slight increment of the P3HT crystals in the surface region. On the other hand, large number of small sized P3HT crystals near the surface region was formed in the 200nm thick film. The solar cell devices showed the 3% power conversion efficiency(PCE) in 1:0.65 and 1:1 ratio(by weight) of P3HT and PCBM in 70nm and 200nm thickness conditions, respectively. Despite to the similar PCE, the short circuit current Jsc was different in 70nm and 200nm devices, which was related to the different nanostructure of P3HT:PCBM after thermal annealing.

Variation of Alloying Element Distribution and Microstructure due to Microsegregation in Ni-base Superalloy GTD 111 (니켈기 초내열 합금 GTD 111에서 편석에 의한 합금원소 분포 및 미세조직 변화)

  • Choi, Baig-Gyu;Kim, In-Soo;Do, Jeong-Hyeon;Jung, Joong-Eun;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.170-177
    • /
    • 2015
  • Segregation during solidification and homogenization during thermal exposure in GTD 111 were investigated. The microstructures of as-cast, standard heat-treated, and thermally exposed specimens were observed by SEM. A compositional analysis of each specimen was conducted by EDS. The dendrite core was enriched in W and Co, though lower levels of Ti and Ta were observed. An unexpected phase, in this case like the ${\eta}$ phase, was observed due to segregation near the ${\gamma}-{\gamma}^{\prime}$ eutectic in the standard heat-treated specimen. Segregation also induced microstructural evolution near the ${\gamma}-{\gamma}^{\prime}$ eutectic during the standard heat treatment. A quantitative analysis and microstructural observations showed that the thermal exposure at a high temperature enhanced the chemical homogeneity of the alloy.

Implementation of a new empirical model of steam condensation for the passive containment cooling system into MARS-KS code: Application to containment transient analysis

  • Lee, Yeon-Gun;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3196-3206
    • /
    • 2021
  • For the Korean design of the PCCS (passive containment cooling system) in an innovative PWR, the overall thermal resistance around a condenser tube is dominated by the heat transfer coefficient of steam condensation on the exterior surface. It has been reported, however, that the calculated heat transfer coefficients by thermal-hydraulic system codes were much lower than measured data in separate effect tests. In this study, a new empirical model of steam condensation in the presence of a noncondensable gas was implemented into the MARS-KS 1.4 code to replace the conventional Colburn-Hougen model. The selected correlation had been developed from condensation test data obtained at the JERICHO (JNU Experimental Rig for Investigation of Condensation Heat transfer On tube) facility, and considered the effect of the Grashof number for naturally circulating gas mixture and the curvature of the condenser tube. The modified MARS-KS code was applied to simulate the transient response of the containment equipped with the PCCS to the large-break loss-of-coolant accident. The heat removal performances of the PCCS and corresponding evolution of the containment pressure were compared to those calculated via the original model. Various thermal-hydraulic parameters associated with the natural circulation operation through the heat transport circuit were also investigated.

Measurement of the Coating Temperature Evolution during Atmospheric Plasma Spraying (대기압 플라즈마 용사 공정에서의 기판 코팅 온도 영향 연구)

  • Lee, Kiyoung;Oh, Hyunchul
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.624-629
    • /
    • 2020
  • For more effective temperature control of atmospheric plasma sprayed (APS) zirconia thermal barrier coating, understanding of the parameters, which influence the substrate temperature, is essential and also more numerical results based on the experimental data are required. This study aims to investigate the substrate temperature control during an APS process. The APS process deals with air-cooled systems, plasma-gas flow, powder feed rate, robot velocity, and substrate effect on the substrate surface temperature control during the process. This systematic approach will help to handle the temperature control, and thus lead to better coating quality.

The high thermal stability induced by a synergistic effect of ZrC nanoparticles and Re solution in W matrix in hot rolled tungsten alloy

  • Zhang, T.;Du, W.Y.;Zhan, C.Y.;Wang, M.M.;Deng, H.W.;Xie, Z.M.;Li, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2801-2808
    • /
    • 2022
  • The synergistic effect of ZrC nanoparticle pining and Re solution in W matrix on the thermal stability of tungsten was studied by investigating the evolution of the microstructure, hardness and tensile properties after annealing in a temperature range of 1000-1700 ℃. The results of metallography, electron backscatter diffraction pattern and Vickers micro-hardness indicate that the rolled W-1wt%Re-0.5 wt% ZrC alloy has a higher recrystallization temperature (1600 ℃-1700 ℃) than that of the rolled pure W (1200 ℃), W-0.5 wt%ZrC (1300 ℃), W-0.5 wt%HfC (1400-1500 ℃) and W-K-3wt%Re alloy fabricated by the same technology. The molecular dynamics simulation results indicated that solution Re atoms in W matrix can slow down the self-diffusion of W atoms and form dragging effect to delay the growth of W grain, moreover, the diffusion coefficient decrease with increasing Re content. In addition, the ZrC nanoparticles can pin the grain boundaries and dislocations effectively, preventing the recrystallization. Therefore, synergistic effect of solid solution Re element and dispersed ZrC nanoparticles significantly increase recrystallization temperature.

Mechanical deterioration and thermal deformations of high-temperature-treated coal with evaluations by EMR

  • Biao Kong;Sixiang Zhu;Wenrui Zhang;Xiaolei Sun;Wei Lu;Yankun Ma
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.233-244
    • /
    • 2023
  • With the increasing amount of resources required by the society development, mining operations go deeper, which raises the requirements of studying the effects of temperature on the physical and mechanical properties of coal and adjacent rock. For now, these effects are yet to be fully revealed. In this paper, a mechanical-electromagnetic radiation (EMR) test system was established to understand the mechanical deterioration characteristics of coal by the effect of thermal treatment and its deformation and fracture characteristics under thermo-mechanical coupling conditions. The mechanical properties of high-temperature-treated coal were analyzed and recorded, based on which, reasons of coal mechanical deterioration as well as the damage parameters were obtained. Changes of the EMR time series under unconstrained conditions were further analyzed before characteristics of EMR signals under different damage conditions were obtained. The evolution process of thermal damage and deformation of coal was then analyzed through the frequency spectrum of EMR. In the end, based on the time-frequency variation characteristics of EMR, a method of determining combustion zones within the underground gasification area and combustion zones' stability level was proposed.

The Effect of Ground Granulated Blast-Furnace Slag on the Control of Temperature Rising in High Strength Concrete (고강도용 콘크리트의 온도상승 억제를 위한 고로슬래그 미분말의 효과)

  • 문한영;최연왕
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.195-204
    • /
    • 1998
  • Generally, in order to maintain high strength in concrete, it needs high cement content and low water-cement ratio.makes internal temperature rising after concrete placing inevitably, and happens temperature stress that makes initial cracks of concrete structure. Therefore, to control the thermal stress of high-strength concrete, we made 3 types of the fineness of ground granulated blast-furnace slag and 4 steps replacement. and then measured an amount of temperature rising and elapsed time of maximum temperature and strength of concrete. Also we considered the test results of heat evolution amount and heat evolution of cement paste made with 5 steps replacement by GGBF slag.As result of this study, in case of the 50% of replacement and the 6,000$\textrm{cm}^2$/g of fineness, we obtained satisfactory results that not only the controlled effect of temperature rising but strength at early ages.

Thermal Evolution of BaO-CuO Flux as Sintering Aid for Proton Conducting Ceramic Fuel Cells

  • Biswas, Mridula;Hong, Jongsup;Kim, Hyoungchul;Son, Ji-Won;Lee, Jong-Ho;Kim, Byung-Kook;Lee, Hae-Weon;Yoon, Kyung Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.506-510
    • /
    • 2016
  • The eutectic melt of BaO-CuO flux is known to be a potential sintering aid for $Ba(Zr,Y)O_3$ (BZY) electrolyte for proton-conducting ceramic fuel cells (PCFCs). A density of BZY higher than 97% of theoretical density can be achieved via sintering at $1300^{\circ}C$ for 2 h using a flux composed of 28 mol% BaO and 72 mol% CuO. In the present study, chemical and structural evolution of BaO-CuO flux throughout the sintering process was investigated. An intermediate holding step at $1100^{\circ}C$ leads to formation of various impurity compounds such as $BaCuO_{1.977}$, $Ba_{0.92}Cu_{1.06}O_{2.28}$ and $Cu_{16}O_{14.15}$, which exhibit significantly larger unit cell volumes than the matrix. The presence of such secondary compounds with large lattice mismatch can potentially lead to mechanical failure. On the other hand, direct heating to the final sintering temperature produced CuO and $Cu_2O$ as secondary phases, whose unit cell volumes are close to that of the matrix. Therefore, the final composition of the flux is strongly affected by the thermal history, and a proper sintering schedule should be used to obtain the desired properties of the final product.

Evolution of the Tropical Response to Periodic Extratropical Thermal Forcing

  • Yechul Shin;Sarah M. Kang;Ken Takahashi;Malte F. Stuecker;Yen-Ting Hwang;Doyeon Kim
    • Journal of Climate Change Research
    • /
    • v.34 no.15
    • /
    • pp.6335-6353
    • /
    • 2021
  • This study examines the temporal evolution of the extratropically forced tropical response in an idealized aquaplanet model under equinox condition. We apply a surface thermal forcing in the northern extratropics that oscillates periodically in time. It is shown that tropical precipitation is unaltered by sufficiently high-frequency extratropical forcing. This sensitivity to the extratropical forcing periodicity arises from the critical time required for sea surface temperature (SST) adjustment. Low-frequency extratropical forcing grants sufficient time for atmospheric transient eddies to diffuse moist static energy to perturb the midlatitude SSTs outside the forcing region, as demonstrated by a one-dimensional energy balance model with a fixed diffusivity. As the transient eddies weaken in the subtropics, a further equatorward advection is accomplished by the Hadley circulation. The essential role of Hadley cell advection in connecting the subtropical signal to the equatorial region is supported by an idealized thermodynamical-advective model. Associated with the SST changes in the tropics is a meridional shift of the intertropical convergence zone. Since the time needed for SST adjustment increases with increasing mixed layer depth, the critical forcing period at which the extratropical forcing can affect the tropics scales linearly with the mixed layer depth. Our results highlight the important role of decadal-and-longer extratropical climate variability in shaping the tropical climate system. We also raise the possibility that the transient behavior of a tropical response forced by extratropical variability may be strongly dependent on cloud radiative effects.

Property and Microstructure Evolution of Nickel Silicides on Nano-thick Polycrystalline Silicon Substrates (나노급 다결정 실리콘 기판 위에 형성된 니켈실리사이드의 물성과 미세구조)

  • Kim, Jong-Ryul;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We fabricated thermally-evaporated 10 nm-Ni/30 nm and 70 nm Poly-Si/200 nm-$SiO_2/Si$ structures to investigate the thermal stability of nickel silicides formed by rapid thermal annealing(RTA) of the temperature of $300{\sim}1100^{\circ}C$ for 40 seconds. We employed for a four-point tester, field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), high resolution X-ray diffraction(HRIXRD), and scanning probe microscope(SPM) in order to examine the sheet resistance, in-plane microstructure, cross-sectional microstructure evolution, phase transformation, and surface roughness, respectively. The silicide on 30 nm polysilicon substrate was stable at temperature up to $900^{\circ}C$, while the one on 70 nm substrate showed the conventional $NiSi_2$ transformation temperature of $700^{\circ}C$. The HRXRD result also supported the existence of NiSi-phase up to $900^{\circ}C$ for the Ni silicide on the 30 nm polysilicon substrate. FE-SEM and TEM confirmed that 40 nm thick uniform silicide layer and island-like agglomerated silicide phase of $1{\mu}m$ pitch without residual polysilicon were formed on 30 nm polysilicon substrate at $700^{\circ}C\;and\;1000^{\circ}C$, respectively. All silicides were nonuniform and formed on top of the residual polysilicon for 70 nm polysilicon substrates. Through SPM analysis, we confirmed the surface roughness was below 17 nm, which implied the advantage on FUSI gate of CMOS process. Our results imply that we may tune the thermal stability of nickel monosilicide by reducing the height of polysilicon gate.