• Title/Summary/Keyword: Thermal evaporator

Search Result 282, Processing Time 0.026 seconds

Molecular Dynamics Simulation on the Thermal Boundary Resistance of a Thin-film and Experimental Validation (분자동역학을 이용한 박막의 열경계저항 예측 및 실험적 검증)

  • Suk, Myung Eun;Kim, Yun Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • Non-equilibrium molecular dynamics simulation on the thermal boundary resistance(TBR) of an aluminum(Al)/silicon(Si) interface was performed in the present study. The constant heat flux across the Si/Al interface was simulated by adding the kinetic energy in hot Si region and removing the same amount of the energy from the cold Al region. The TBR estimated from the sharp temperature drop at the interface was independent of heat flux and equal to $5.13{\pm}0.17K{\cdot}m^2/GW$ at 300K. The simulation result was experimentally confirmed by the time-domain thermoreflectance technique. A 90nm thick Al film was deposited on a Si(100) wafer using an e-beam evaporator and the TBR on the film/substrate interface was measured using the time-domain thermoreflectance technique based on a femtosecond laser system. A numerical solution of the transient heat conduction equation was obtained using the finite difference method to estimate the TBR value. Experimental results were compared to the prediction and discussions on the nanoscale thermal transport phenomena were made.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

A fouling mitigation device for a wastewater heat recovery heat pump system using a bubbling fluidized bed with cleaning sponge balls (버블 유동층과 세정 볼을 이용한 폐수 열원 히트펌프 시스템 증발기의 관 외측 오염 저감 장치에 관한 연구)

  • Kim, Jong-Soo;Kim, Do-Bin;Kim, Jun-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.152-156
    • /
    • 2016
  • Wastewater heat recovery heat pump systems use heated wastewater from public baths or factories as the heat pump's heat source. Generally, this system uses a bare tube evaporator. In the heat transfer process from wastewater to refrigerant, thermal resistance is caused primarily by fouling deposits on the outside surface of tube. Fouling directly increases thermal resistance and decreases heat pump efficiency. Thus, it is desirable to eliminate fouling. In this study, we fabricated a fouling mitigation device using a bubbling fluidized bed with cleaning sponge balls in the wastewater bath. Experimental conditions were as follows: $20^{\circ}C$ cold-water temperature, $40^{\circ}C$ wastewater temperature, 100 L/h cold water flow rate, and $0.161m^2$ heat exchanger surface area. Experimental results showed that the thermal resistance of fouling decreased by 56% with the fluidized bed alone and by 86% with both the fluidized bed and cleaning sponge balls.

Stress and Fatigue Evaluation of Distributor for Heat Recovery Steam Generator in Combined Cycle Power Plant (복합발전플랜트 배열회수보일러 분배기의 응력 및 피로 평가)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.44-54
    • /
    • 2018
  • Stress and fatigue of the distributor, an equipment of the high-pressure evaporator for the HRSG, were evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the results of the piping system analysis model, reaction forces of the tubes connected to the distributor were derived and used as the nozzle load applied to the detailed analysis model of the distributor afterward. Next, the detailed model to analyze the distributor was constructed, the distributor being statically analyzed for the design condition with the steam pressure and the nozzle load. As a result, the maximum stress occurred at the bore of the horizontal nozzle, and the primary membrane stress at the shell and nozzle was found to be less than the allowable. Next, for the transient operating conditions given for the distributor, thermal analysis was performed and the structural analysis was carried out with the steam pressure, nozzle load, and thermal load. Under the transient conditions, the maximum stress occurred at the vertical downcomer nozzle, and of which fatigue life was evaluated. As a result, the cumulative usage factor was less than the allowable and hence the distributor was found to be safe from fatigue failure.

Calculation of non-condensable gases released in a seawater evaporating process (해수 증발과정에서의 기체방출량 계산)

  • Jeong, Kwang-Woon;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.182-190
    • /
    • 2017
  • All liquids contain a small amount of gaseous components and the amount of gases dissolved in a liquid is in accordance with Henry's Law. In a multi-stage thermal-type seawater desalination plant, as the supplied seawater undergoes variations in temperature and pressure in each evaporator, the gases dissolved in the seawater are discharged from the liquid. The discharged gases are carbon dioxide, nitrogen, oxygen, and argon, and these emitted gases are non-condensable. From the viewpoint of convective heat transfer, the evaluation of non-condensable gas released during a vacuum evaporation process is a very important design factor because the non-condensable gases degrade the performance of the cooler. Furthermore, in a thermal-type seawater desalination plant, most evaporators operate under vacuum, which maintained through vacuum system such as a steam ejector or a vacuum pump. Therefore, for the proper design of a vacuum system, estimating the non-condensable gases released from seawater is highly crucial. In the study, non-condensable gases released in a thermal-type seawater desalination plant were calculated quantitatively. The calculation results showed that the NCG releasing rate decreased as the stage comes getting a downstream and it was proportional to the freshwater production rate.

The Properties of Au-Al Alloy Thin Films with a Thermal Evaporator for Purple Gold (퍼플골드를 위한 열증착법으로 제조된 Au-Al 합금 박막의 물성연구)

  • Kim, Jun-Hwan;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.466-472
    • /
    • 2008
  • Purple Gold is the alloy consisting of 78wt%Au-22wt%Al, and is expressed as a chemical formula, $AuAl_2$. Lately it is being used for the material of accessories or the decorative ornaments, being one of the colored golds having the peculiar purple color, like White Gold and Pink Gold. Purple Gold has the weak point in shaping through casting process due to the bad malleability and castability, being the intermetalic compound of Au and Al. Therefore, it is possible to produce the final product only by the cutting and the grinding process or to use it as a decorative coat with the thin film evaporation. This study implemented two kinds of thin film experiments. One is the case that heat treatment was made after Au and Al deposition evaporated separately with a weight ratio 78:22 on the 200nm$SiO_2$/Si substrate. The other is the case that the surface deposition was made through the vacuum evaporation, keeping the glass substrate temperature remain room temperature, using the bulk $AuAl_2$ as a source. The final film property was measured, focusing on the Purple Gold's color and thickness through the bare eye inspection, the microstructure analysis, the surface resistance analysis, the color difference analysis, and XRD analysis. Purple Gold was not formed, as the excessive surface agglomeration occurred, in case of being produced and treated thermally with 12.5nmAu/40nmAl/200nm$SiO_2$/Si structure. Our results suggest that of Purple Gold films, showing the same purple color as the bulk's, were successfully deposited with the direct thermal evaporation from the $AuAl_2$ bulk source.

Fabrication process of embedded passive components in MCM-D (MCM-D 기판 내장형 수동소자 제조공정)

  • 주철원;이영민;이상복;현석봉;박성수;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 1999
  • We developed Fabrication process of embedded passive components in MCM-D substrate. The proposed MCM-D substrate is based on Cu/photosensitive BCB multilayer. The substrate used is Si wafer and Ti/cu metallization is used to form the interconnect layer. Interconnect layers are formed with 1000$\AA$ Ti/3000$\AA$ Cu by sputtering method and 3$\mu\textrm{m}$ Cu by electrical plating method. In order to form the vias in photosensitive BCB layer, the process of BCB and plasma etch using $C_2F_6$ gas were evaluated. The MCM-D substrate is composed of 5 dielectric layers and 4 interconnect layers. Embedded resistors are made with NiCr and implemented on the $2^{nd}$ dielectric layer. The sheet resistance of NiCr is controlled to be about 21 $\Omega$/sq at the thickness of 600$\AA$. The multi-turn sprial inductors are designed in coplanar fashion on the $4^{th}$ interconnect layer with an underpass from the center to outside using the lower $3^{rd}$ interconnect layer. Capacitors are designed and realized between $1^{st}$ interconnect layer and $2^{nd}$ interconnect layer. An important issue in capacitor is the accurate determination of the dielectric thickness. We use the 900$\AA$ thickness of PECVD silicon nitride film as dielectric. Capacitance per unit area is about 88nF/$\textrm {cm}^2$at the thickness of 900$\AA$. The advantage of this integration process is the compatibility with the conventional semiconductor process due to low temperature PECVD silicon nitride process and thermal evaporation NiCr process.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Characterization analysis of $CuInS_2$ absorber layer grown by heat treatment of low temperature (저온에서 열처리한 $CuInS_2$ 광흡수층 박막 특성분석)

  • Yang, Hyeon-Hun;Back, Su-Ung;Kim, Han-Wool;Han, Chang-Jun;Lee, Suk-Ho;Jeong, Woon-Jo;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.98.2-98.2
    • /
    • 2010
  • $CuInS_2$ thin films were synthesized by sulfurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furnace annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}$ [$cm^{-3}$], 312.502 [$cm^2/V{\cdot}s$] and $2.36{\times}10^{-2}$ [${\Omega}{\cdot}cm$], respectively.

  • PDF

Manufacturing and Operating Performance of the Heat Pipe with Sintered Wick (소결윅 히트파이프의 제작 및 작동성능)

  • Yun, Ho-Gyeong;Moon, Seok-Hwan;Ko, Sang-Choon;Hwang, Gunn;Choy, Tae-Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1260-1266
    • /
    • 2002
  • In this study, to make an excellent heat pipe, the manufacturing technology of a sintered wick was investigated. Making a sintered wick is known to be very difficult but it has many advantages. For example, the porosity and pore size can be controlled and the capillary force is great. The mixture of copper and pore former powder was used as a wick material and ceramic-coated stainless steel was used as a mandrel which is necessary for vapor flow. To analyze the feature of the manufactured wick, not only porosity and pore size were measured but also the sintered structure was observed. A heat pipe with sintered wick was manufactured and the performance test of the heat pipe was performed in order to review cooling performance. The performance test results for the 4mm diameter heat pipe with the sintered wick shows the stability since the temperature difference between a evaporator and a condenser of the heat pipe is less than 4.4$^{\circ}C$, and thermal resistance is less than 0.7$^{\circ}C$/W, In the meantime the composite wick that is composed with sintered and woven wire was also examined. The heat transfer limit of the heat pipe with composite wick was enhanced about 51%~60% compare to the one with sintered wick.